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SUMMARY

This thesis presents an integrated framework for online obstacle avoidance

of rotary-wing unmanned aerial vehicles (UAVs), which can provide UAVs an ob-

stacle field navigation capability in a partially or completely unknown obstacle-rich

environment. The framework is composed of a LIDAR interface, a local obstacle

grid generation, a receding horizon (RH) trajectory optimizer, a global shortest path

search algorithm, and a climb rate limit detection logic.

The key feature of the framework is the use of an optimization-based trajectory

generation in which the obstacle avoidance problem is formulated as a nonlinear

trajectory optimization problem with state and input constraints over the finite range

of the sensor. This local trajectory optimization is combined with a global path

search algorithm which provides a useful initial guess to the nonlinear optimization

solver. Optimization is the natural process of finding the best trajectory that is

dynamically feasible, safe within the vehicle’s flight envelope, and collision-free at

the same time. The optimal trajectory is continuously updated in real time by the

numerical optimization solver, Nonlinear Trajectory Generation (NTG), which is a

direct solver based on the spline approximation of trajectory for dynamically flat

systems. In fact, the overall approach of this thesis to finding the optimal trajectory

is similar to the model predictive control (MPC) or the receding horizon control

(RHC), except that this thesis followed a two-layer design; thus, the optimal solution

works as a guidance command to be followed by the controller of the vehicle.

The framework is implemented in a real-time simulation environment, the Georgia

Tech UAV Simulation Tool (GUST), and integrated in the onboard software of the

xx
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rotary-wing UAV test-bed at Georgia Tech. Initially, the 2D vertical avoidance capa-

bility of real obstacles was tested in flight. The flight test evaluations were extended

to the benchmark tests for 3D avoidance capability over the virtual obstacles, and

finally it was demonstrated on real obstacles located at the McKenna MOUT site

in Fort Benning, Georgia. Simulations and flight test evaluations demonstrate the

feasibility of the developed framework for UAV applications involving low-altitude

flight in an urban area.
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CHAPTER I

INTRODUCTION

1.1 UAVs and Evolution of UAV Autonomy

The development of unmanned aerial vehicles (UAVs) started from an interest in re-

placing manned aircraft in dangerous or dull tasks in military operations, and UAVs

quickly emerged as efficient and cost-effective aerial platforms for tactical reconnais-

sance and surveillance, as their operation became practical. Currently, different forms

of UAVs are operating or under development as seen in Figure 1, mainly for military

purposes in surveillance, reconnaissance, targeting, and even in the near future for

combat operations.

Figure 1: Various forms of UAVs are operating or being developed.

Obviously, the capability and versatility of UAVs have contributed to recent grow-

ing attention toward them: UAVs are the best-suited aerial platforms to replace

manned aircraft in 3-D missions that are dull, dirty and dangerous. The political

and human cost is lower if the mission fails, and the probability of mission success is
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higher than for manned aircraft [1]. In addition, UAVs are cost-effective to procure

and to maintain [10], mainly because they lack the requirement of considering human

factors for their operation. Today they are being employed in roles and applications

that their designers never envisioned as their unanticipated flexibility and mission

capability have been proven in recent conflicts and crises. This proven versatility

of UAVs has led to the consensus that UAVs are indispensable assets that play key

roles in modern technology-intensive battlefields, even taking over some conventional

roles usually filled by manned aircraft. Therefore, the development of UAVs has been

spreading rapidly worldwide for various military and civilian purposes.

UAVs have also been called unmanned aircraft systems (UAS), remotely piloted

vehicles (RPV), drones, or robot planes, but the name UAV is widely accepted among

associated communities. A UAV is described as either a single vehicle or a system,

usually consisting of three to six air vehicles, a ground control station, and support

equipment [10]. According to the definition from the US Department of Defense

(DoD), a UAV is [1]:

A powered, aerial vehicle that does not carry a human operator, uses aerodynamic

forces to provide vehicle lift, can fly autonomously or be piloted remotely, can be

expendable or recoverable, and can carry a lethal or non-lethal payload. Ballistic

or semi ballistic vehicles, cruise missiles, and artillery projectiles are not considered

unmanned aerial vehicles.

Along with the above definition, another distinguishing feature of UAVs is the abil-

ity to execute missions with either minimal or no dependence on outside instructions;

this is known as UAV autonomy or built-in intelligence [22]. Numerous technologies

have been developed for the subsystems, systems, or system of systems level of UAV

autonomy, and those technologies range from low-level remote piloting to the highly

advanced multi-agent collaboration. So, there have been efforts to establish a common

standard to measure the level of complexity and capability of UAV autonomy. One
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Figure 2: Machine decision capabilities versus autonomous control level [22]

standardized metric is the autonomous control level (ACL) [1, 22, 120] and Figure 2

depicts the ACLs and the corresponding capabilities.

In addition to ACLs, the autonomous technologies for a single UAV can be clas-

sified into three hierarchical layers [11, 102]: flight control, vehicle management, and

mission management. The first layer includes automatic flight control technologies

or functions to stabilize the vehicle and guide it along the command path. This layer

includes vehicle stabilization, autonomous take-off and landing, and adaptive trajec-

tory tracking. In particular, for UAVs, there has been a trend of applying current

state-of-the-art control techniques rather than using classical PID controls among

UAV research groups because the controller is required to have high performance to

overcome the challenges inherent in the new applications of UAVs. The main feature

of UAVs, that they are uninhabited by human pilots, brings its own set of pros and

cons to controller design. On the one hand, the controller design need not be con-

cerned with human limitations and safety; on the other hand, the controller must be

highly robust and flexible to make up for the lack of human intelligence in abnormal
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decision-making situations. Damage or fault tolerant control [33], model predictive

control [74], and nonlinear adaptive control based on neural network (NN) [62] are

being actively studied and applied to the UAV control systems. The second layer of

UAV autonomy, the vehicle management layer, includes the technologies associated

with coordination and navigation in mission environments. Command generation to

the control layer, vehicle configuration management, operational mode management,

fault detection and identification, multi-sensor fusion for navigation, and obstacle

avoidance functions can be sorted in this layer. Finally, the mission management

layer includes the technologies dealing with mission management, such as generation

of mission trajectories, or coordination between multiple UAVs. The time-line man-

agement of each vehicle, mission execution sequences, in-flight mission reassignment,

and formation flight management may be included in this layer.

Recent realization of high-level autonomy functions and real battlefield-proven

versatility can be attributed to revolutionary breakthroughs in computer technolo-

gies. Equipped with more powerful microcomputers, accurate micro navigation de-

vices, high-precision surveillance sensors, wide range communication systems, and

high speed data-links, future UAV systems are expected to be outfitted with high level

TRL (Technology Readiness Level) technologies. The anticipated high-level technolo-

gies in the near future have prompted research on the possibility for expanding the

UAV’s operation areas beyond military to public and possibly commercial applica-

tions [26]. These new application areas include search and rescue [48], surveillance on

sites hit by natural disasters (i.e., tornado, earthquake or flood), typically inaccessible

or dangerous to humans, or sites where high radioactive radiation is present [125],

as depicted in Figure 3, which shows the Fukushima nuclear power plant after the

melt-down caused by the earthquake and tsunami in Japan in 2011.

Also, severe weather observation [29], traffic monitoring [109], urban surveillance
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Figure 3: After the melt-down of the nuclear power plant at Fukushima, Japan in
2011

[117], indoor navigation and surveillance [121], and even filming for movies or adver-

tisements are being forecasted as new application areas for UAVs. Obviously, some of

the new applications inevitably require the near-terrain flight capability over urban

areas. For such missions, rotary-wing UAVs have been considered the best-suited

because of their unique vertical and horizontal flight capabilities such as hovering,

vertical climb and descent, level flight with any heading angle, and even backward

flight. Therefore, new emerging UAV applications requiring the low-altitude flying

capability have motivated ongoing research on autonomous obstacle avoidance in

obstacle-rich and unknown environments, or on collision avoidance in airspace filled

with various aircraft swarms. Indeed, this thesis is one of such research efforts.

1.2 Autonomous Trajectory Planning

The term planning has been commonly used in robotics to roughly define the problem

of how to move, and trajectory planning, otherwise referred to as trajectory generation,

path planning, or more often motion planning in robotics, is broadly defined in control

literature as the construction of inputs to a nonlinear dynamical system that drives

it from an initial state to a specified goal state [83]. Otherwise, we may describe

trajectory planning as a computation to create a desired trajectory (or path), which
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is simply the time series of position, velocity, and acceleration, accounting for the

vehicle’s kinematic and dynamic properties to accomplish the desired flight pattern

of a mission.

1.2.1 Hierarchy of Planning

The majority of trajectory planning for UAVs has been done with hierarchical layers

[11], similar to the layers of autonomous technologies, shown in Figure 4, which

depicts the top-down connections of mission planning, trajectory planning, and vehicle

control.

Figure 4: Hierarchical layers of planning and control of UAV

The mission planning layer is for the high level human-UAV inter-operations. De-

cisions and inputs of human operators, flight or mission plans, and communications

between operators and the vehicles are generally handled and processed on separate

computational systems in the ground control station. Mission monitoring, mission

assignments, task scheduling, and generation of a global path are typically executed

in this layer of planning. Waypoints of the mission, task assignments, and a global
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mission path are the typical outputs of the mission planning. Global trajectory op-

timization using vast sources of tactical data and computational resources is usually

involved in path planning in this layer [12]. The resultant waypoints, tasks, or coarse

paths are transferred to the lower layer, the trajectory planning layer, to generate

dynamically tractable or feasible paths for the vehicle. The trajectory planning layer

is for the guidance of the vehicle from its present state to its desired path or to the

waypoints determined by the mission planner. In general, the trajectory planner

generates local reference trajectories to be followed by the controller. One typical

trajectory planner most UAV systems are adopting is the waypoint navigator that

generates the guidance command either to pass by or arrive at the waypoint by the

sequence of the entire waypoint set. Finally, the control layer has the role of vehicle

stabilization and command trajectory tracking.

Currently, the majority of UAVs are still being flown by remote human piloting

or by the automatic tracking of waypoint-based plans predetermined on the ground.

In fact, these operational schemes still largely need human operation during ordi-

nary flight. However, the future UAV systems are expected to have lower human

dependency even in environments like an urban operation of UAV swarm. Obviously,

the automation of trajectory planning as well as improving current online trajectory

planning are crucial to the mission capabilities of future UAV systems, and auto-

matic obstacle avoidance in uncertain environments is one of the typical aspects of

trajectory planning automation that should be realized with priority.

1.2.2 Obstacle Avoidance

In robotics, obstacle avoidance is known as a representative task of trajectory plan-

ning to overcome obstacles during movement to a destination. One mathematical

description of obstacle avoidance can be given as: There is obstacle avoidance for

any vehicle, if p(t) /∈ O, where p(t) ∈ R3 is the position of vehicle and O ⊂ R3
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represents the set of all obstacle spaces [114], or we may describe it informally in the

manner of control literature as any control efforts to make the plant’s position satisfy

the non-intersecting position constraints to obstacles [83]. The above descriptions of

obstacle avoidance imply that it is a typical trajectory planning problem to guide the

vehicle to find a safe path through free space in the environment with respect to the

obstacle geometry, the vehicle dynamics, and other constraints. Obstacle avoidance

has been a major subject in robotics in the development of articulated robot manip-

ulators [43, 71], unmanned ground vehicles (UGVs) [51, 79, 119, 123], or even robot

soccer [49].

In fact, it is a recent trend that the problem of obstacle avoidance is treated as

a trajectory planning problem, which implies a guidance problem to find the local

trajectory being followed, but in much of the literature, it has been characterized

as a problem of mission planning to find the global path for military aircraft at the

operational or strategic level, i.e., the path that maximizes safety and survivability

and minimizes vulnerability to expected threats, which is solved by deliberate opti-

mization or even by stochastic game theory [12, 104]. A great variety of methods

using either heuristics or optimizations have been invented for robotics and aerospace

applications. Detailed reviews on such methods will be addressed in later sections.

1.2.3 Terrain Following and Nap of the Earth

Terrain following (TF), otherwise known as contour flight, terrain avoidance (TA),

and the nap of the earth (NOE) are the representative low-altitude tactical maneuvers

of military aircraft. TF has more than a half century of development, specifically for

the deep penetration attack aircraft [13, 66] and missiles [86, 136], to provide effective

guidance to maintain minimum clearance over terrain and to fly fast, while minimizing

the probability of being detected by enemy surveillance either on the ground or in the

air [99]. Unlike TF, TA is a horizontal guidance problem of flying around hills and
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avoiding threats, and NOE is a three-dimensional guidance problem that deals with

much lower vertical and lateral trajectories [19, 55]. In fact, NOE has been known as

the specific tactical maneuver of helicopters [20, 21, 25] because the helicopter’s high

maneuverability at low speed is best suited to such a maneuver. On the other hand,

fixed-wing aircraft have difficulty in maneuvering at low speed due to the limitation

of the stall. During NOE flight, helicopters tend to fly within a few feet of power

lines, trees, hills, or other ground objects. Figure 5 shows the different low-altitude

maneuvers of a helicopter.

Figure 5: Three typical low-altitude maneuvers of rotor-craft [19]

TF has been explored as either an offline trajectory optimization problem [41,

73, 88, 108, 129] or a guidance and control problem to steer the vehicle in vertical

plane using the terrain contour measured by the forward looking terrain-following

radar (TFR) and radio altimeter (RA). One renowned non-optimization based TF

algorithm is the Advanced Low Altitude Technique (ADLAT), which is still being

used in many military aircraft [13, 66, 72, 77]. ADLAT generates the flight path

angle command by computing constant vertical acceleration parabolas for current
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flight conditions and dominant (highest) terrain point within TFR range [40]; in

other words, ADLAT builds the TF trajectory composed of segments of constant

acceleration pull-up and push-over or reverse combination.

From the early years since the TF concept was invented, many researchers have

concentrated on trajectory optimization techniques to find the minimum deviation

trajectory above terrain [50, 134, 136]. A survey of optimization-based TF algorithms

reveals that, in order to resolve the issues of numerical optimization and limited com-

puting power, some past optimization-based methods solved a finite horizon optimal

control problem formulated as linear quadratic (LP) programming, and the optimal

control was tracked by the flight controller [41, 72, 77]. This approach is similar to

current MPCs except that MPC usually seeks the direct control command to the

vehicle. Harpern [50] presents good reviews of the early optimization-based TF/TA

methods.

Like other trajectory planning problems, TF problems have also been explored by

a variety of methods from the past: combinational searching methods using dynamic

programming (DP) [7] or A∗ algorithm [53]; the branch and bound method in con-

junction with the DP [131]; spline based optimization methods [41]; optimal control

based methods [108]; direct optimization methods using direct collocation [52, 100];

even genetic algorithms (GA) and neural networks have been applied to TF prob-

lems [50]. Similar to the recent trend of trajectory planning which will be presented

later, the survey discovered that practical implementation of TF algorithms in actual

aircraft systems [66, 72] uses a search algorithm like A∗ to get a mission-level coarse

optimal path, and it uses a guidance system like ADLAT or linear optimal control

to generate a local path over the terrain. The computed local path is used either for

the automatic TF guidance or for the provision of guidance information to pilot via

avionics such as a heads up display (HUD) or helmet mounted display (HMD).
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For some time, the global TF paths have been determined by optimization meth-

ods using the calculus of variation or indirect optimal control methods [88, 108, 129].

However, the optimal control based methods generally require solving the two-point

boundary value problem (TPBVP), which is computationally expensive, and often

the solutions are difficult to find even though the method can provide the global TF

path of which optimality is theoretically guaranteed. The diversity of optimization

methods for TF is similar to those of trajectory planning, so they will be presented

in a later section about the optimization-based trajectory planning methods.

The trajectory planning for NOE flight is similar to that of TF or obstacle avoid-

ance problems except that the NOE considers a three-dimensional path more proxi-

mate to the terrain and obstacles to maximize cover and concealment. This distinction

results in a significant difference in formulation between the NOE problem and the

obstacle avoidance problem. The NOE problem adopts optimization to minimize the

deviation from terrain and obstacles with the performance index having clearance as

a term, whereas the general obstacle avoidance problem usually takes the clearance as

a constraint, as its definition implies. Therefore, roughly speaking, NOE flight might

be the extension of TF to three-dimensional space.

NOE path planning inherently assumes incomplete information about the flight

region. Although the large scale terrain features and structures might be completely

surveyed a priori, exact information about small obstacles like trees, small build-

ings, power lines and wires, etc., is not easy to acquire and also highly variant with

time. In order to tackle this aspect of trajectory planning for NOE, Cheng [19, 20]

proposed a three-stage of planning, long-term mission planning for a template path

using large scale known terrain geometry and obstacles to set up the waypoints, mid-

field trajectory planning with a local map and known obstacle information to get

the trajectory between two waypoints, and finally near-field in-flight trajectory plan-

ning using onboard obstacle sensors to generate the safe local avoidance trajectory
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while minimizing the deviation of the mid-term path. This local avoidance trajectory

generation for NOE flight is the main subject of this thesis.

1.3 Survey of Trajectory Planning Methods

Trajectory planning or motion planning has been an important research topic in the

artificial intelligence community in the field of robotics and aerospace for decades, and

numerous methods have been developed for a variety of applications in both areas.

A recent book by LaValle [83] covers a broad range of motion planning methods, and

other excellent survey works by Schwartz [116], Hwang and Ahuja [56], and Latombe

[81] have been used as references for early motion planning methods. In addition

to early surveys, recent works [47, 96] provide good overviews of trajectory planning

methods in the UAV field.

Trajectory planning methods can be classified in different ways: by the scope

of planning (deliberate or reactive, otherwise, global or local planning); whether it

considers differential constraints (i.e., vehicle dynamics) or not; whether it uses opti-

mization technique or not; whether it uses heuristics or not; the probabilistic or not,

etc. As the main interest of this thesis is trajectory planning for obstacle avoidance,

those methods that have been widely applied to obstacle avoidance for UAVs are

selectively surveyed.

1.3.1 Methods without Differential Constraints

The planning methods in this category do not formalize any differential constraints

(kinematics or dynamics) in problem formulation and purely focus on finding a safe

path in configuration space. Thus the planning is relatively easy compared to the

methods that include vehicle dynamics, but the resultant path might be dynamically

infeasible. However, despite this disadvantage, the computational advantages sup-

port using these methods as the base trajectory generator for other methods that

account for the vehicle dynamics. There are three well known major sub-classes in
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this category: cell decomposition methods, roadmap methods, and potential field

methods.

The cell decomposition methods rely on partitioning of the configuration space

into a finite number of cells in each of which collision-free paths can be easily found.

In this method, the configuration space is the set of all possible configurations of the

vehicle, usually referred to as the vehicle state space, and its dimension corresponds

to the degrees of freedom of vehicle motion [83]. The planning problem in the cell

decomposition method is the problem of finding a sequence of neighboring cells in-

cluding the initial and final destination. Depending on the detailed decomposition,

i.e., how to make free space into smaller convex polygons, there are different vari-

ations: Rectangular cell decomposition [36], quad-tree or octree decomposition [5],

trapezoidal decomposition, cylindrical algebraic decomposition, connected ball [130],

etc. For searching neighboring cells, heuristic search methods such as A∗ [53] and D∗

[122] have been commonly used.

Roadmap methods convert the path planning problem into the problem of con-

structing a network of segmented paths that spans the obstacle-free space where the

problem is to find the best sequence of connecting path segments from the initial

position to the goal by search algorithms such as A∗, D∗, and dynamic programming.

Visibility graph methods [32, 101] and Voronoi diagram methods [54, 85, 128] are

representative; the freeway and the silhouette method [16] also can be sorted in this

class.

The above two classes of methods are complete, which means in planning theory

that they can find the solution if it exists; and they are computationally efficient, so

they can compute the entire path fast. However, the resultant path always touches

the marginal boundaries of obstacles, which is sometimes unnecessary.

Potential field methods, otherwise known as potential field navigation (PFN), were

first proposed by Khatib [71], who applied the classical potential flow equation in fluid
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dynamics to the path planning of mobile manipulators and mobile robots [76, 119]. In

PFN, obstacles are represented as repulsive potential functions, the sources in fluid

dynamics, whereas the destination point is represented as an attractive potential

function, or the sink. The problem formulation corresponds to the procedure of

constructing and placing repulsive and attractive potential functions depending on

the obstacle configuration; the potential function is partially differentiated to come up

with the force to control the vehicle and to find the path. The numerical integration of

the partial differential equation usually results in smooth and dynamically tractable

paths around the obstacles to the destination. However, it is widely known that

PFN has some disadvantages: The classical PFN is incomplete, for the vehicle might

get trapped in local minima depending on the obstacle configuration (if the shape is

oval)[47], so, the complete path to the destination may not be obtained even though

it exists. Obstacles are modeled as soft constraints with continuous and differentiable

potential functions. They cannot be modeled as hard constraints because of the

difficulty of the potential functions to describe the obstacle shape exactly; thus the

hard avoidance is not possible in PFN and the vehicle may approach too closely

to obstacles, unnecessarily breaking the desired clearance. There have been efforts

to fix these disadvantages by modifying the classical PFN approach, and the use of

harmonic potential functions [23] is one of such efforts.

1.3.2 Randomized and Probabilistic Methods

Randomized methods were invented to circumvent the computational complexity of

global path planning and to increase the completeness of the algorithm. The prob-

abilistic roadmap (PRM) method, the rapid random tree (RRT) method, and the

motion primitive automation (MPA) methods are sorted in this category. The PRM

algorithm was first introduced by Kavraki et al. [69]. PRM algorithms combine an

offline construction of a roadmap and randomized online selection of a path from the
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roadmap. Online selection of the path is done by computing the shortest path from

the current position to the closest node point on the roadmap. The completeness of

PRM has been proven in a probabilistic sense [38]; however, this algorithm cannot

encompass the vehicle dynamics and the rapidly changing environment with moving

obstacles due to the offline computation of the roadmap.

LaValle [82] introduced the rapidly-exploring random tree (RRT) method as an

alternative randomized method that can produce dynamically tractable trajectories

with hard avoidance guarantees. RRT finds the path by building the tree of tractable

segment paths and propagating branches toward randomly generated intermediate

target points until at least one branch reaches the destination. A significant feature

of RRT is that the resultant trajectories are highly tractable by the vehicle and,

under appropriate conditions, the RRT algorithm has been proven probabilistically

complete, so it can find the path to the destination if it exists [39].

However, it has been noted that the above two methods have difficulty in including

more accurate vehicle dynamics or vehicle motions. To resolve this issue, Frazzoli

[38] introduced a randomized method using motion primitives of the vehicle, the so-

called maneuver automaton (MA), which represents the predefined set of trim and

dynamically feasible maneuvers [38]. In MA methods, RRT uses the MAs to expand

the path in the obstacle field, and the path is selected by the optimal selection by

dynamic programming that minimizes the value function.

1.3.3 Reactive and Deliberate Planning

The terms reactive and deliberate can be otherwise referred to as local and global

respectively, representing the scope of planning. Reactive planning methods use only

the local knowledge of an obstacle field usually obtained from the sensors, such as

a visual camera [112] or a scanning laser [44], and the method continuously updates

the local trajectory patches as time advances. So, the reactive method can handle
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the uncertainties in the obstacle field, such as obstacles unknown a priori or moving

obstacles. However, because it only takes the local area into account and not the entire

obstacle field, it may not find a complete trajectory to the destination, let alone an

optimal one. Therefore, there has been a trend of combining reactive planning with

the global planning method to “adjust” the portion of global path to the changes in the

obstacle field; the computation time should be sufficiently fast to deal with sudden

changes in avoidance situations, so many reactive approaches have used heuristic

trajectory planning methods. The work of Redding et al. [107] is a typical example

that used the combination of RRT and Dijkstra’s algorithm [31] and Hwangbo et al.

[57] used RRT and A∗.

On the other hand, deliberate planning is mostly related to military mission plan-

ning systems [12], and it deals with the global trajectory, taking into account broad

mission elements, such as other friendly or enemy vehicles involved in the mission,

available fuel, armaments, threats on the ground and in the air, etc. For obstacle

avoidance, deliberate planning uses all known information about obstacles and the

path generation method that can produce a complete path. In fact, any complete

planning methods introduced in the previous section can be used in the deliberate

planning, but the optimization-based global path planning has been used most often

in deliberate planning because deliberate planning seeks the best path that can sat-

isfy the mission objectives such as the maximum mission effective path, the maximum

survivability path, or the minimum fuel-consumption path.

1.3.4 Optimization-Based Methods

Trajectory planning has been one major area where many mathematical and numer-

ical optimization techniques are actively applied to get the optimal path satisfying

the constraints given in the problem specification and the criteria such as shortest

path, minimum time, minimum energy, minimum fuel, etc. The trajectory planning
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by optimization is often referred to as trajectory optimization.

Trajectory optimization has the advantage that the resultant path is backed by

the optimality from the background theory of optimization, and it intrinsically in-

cludes the computation and selection process for determining the best path from the

set of feasible candidates satisfying the requirements of the problems other heuris-

tic methods cannot provide. However, it may need complicated problem formulations

and significant computational resources, which actually have prevented trajectory op-

timization being used for online applications in the past. Specifically, for the formu-

lation of trajectory optimization, formalizing complex obstacle geometry, full vehicle

dynamics, and associated nonlinear constraints into mathematical forms are not easy

tasks, and as the complexity of the optimization increases, the resultant optimization

problem usually ends up NP-hard [61]. Even though the initial guess is provided, the

convergence time might increase significantly [61, 135]. However, despite those disad-

vantages, by the use of approximations to reduce the computational complexity, such

as point mass vehicle assumption, simplified obstacle geometry, linearized complex

constraints, etc., trajectory optimization has been used widely for offline global path

planning in particular.

The following strategies have been applied to obstacle avoidance. The time-

optimal obstacle avoidance with or without state and input constraints [126, 127]

has been a common policy for some time, and even recently, the time-optimal ap-

proach incorporating the vehicle limit parameters into the obstacle avoidance was

introduced by Moon and Prasad [94], which is the basis of this thesis. Regarding

safety considerations, much of the literature has taken the clearance distance as a

hard constraint, but there are other optimal approaches based on MPC formulating

the clearance as a soft constraint embedded in the cost function [118]. Trajectory op-

timizations have been applied to the terrain following problems too, having both time

and vertical clearance in their cost function [88, 129]. Therefore, the role of dealing
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with safety in trajectory optimization depends on the problem policy: Is safety a soft

constraint or a hard one?

A classical discrete optimization technique being widely used for searching the

global optimal path is dynamic programming (DP), which is based on Bellman’s

principle of optimality, simply stated: if a trajectory is optimal, the end-portion of it

should also be optimal [7]. DP has been widely used to search for the optimal path

in cell-decomposition methods and graph search methods, mostly in order to build

the optimal path considering the weighted cost of each segmented path without con-

sidering any dynamics or constraints. DP is inherently unable to take into account

the dynamics and the constraints in its original formulation, so optimization using

DP for dynamics problems should discretize the problem till the system dynamics

is inconsequential. This approach usually ends up with huge problem dimensions.

For dynamic optimization problems, the extension of DP to the differential dynam-

ics systems, referred to as differential dynamic programming (DDP) [59], has been

used in various trajectory optimization problems of dynamical systems [80] even with

constraints [84].

Other optimization methods that can handle nonlinear dynamics can be catego-

rized into two major groups, indirect methods and direct methods. Betts [9], Conway

[24], and Stryk [124] provide a thorough review of the major methods of both cat-

egories. Indirect methods are based on the optimal control theory rooted in the

calculus of variation and the necessary conditions of optimality derived from Pon-

tryagin’s Maximum Principle [103]. The simultaneous differential equations of states

and co-states are analytically derived from the necessary conditions of optimality and

the transversality conditions, respectively. These equations form the so-called two

point boundary problem (TPBVP) [14, 15], which is solved by numerical solution

techniques, such as gradient descent, shooting, and collocation method [9]. It is well

known that indirect methods can provide more accurate (local or global) optimal
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solutions but using indirect methods for trajectory optimization has several problems

associated with TPBVP. For one thing, it requires daunting analytical derivation

of differential equations, which becomes a challenging task if the problem includes

complex nonlinear system dynamics or constraints. In addition, the convergence of

the solution is sensitive to initial guesses. Also, it is difficult to build initial guesses

of co-states, which usually do not have a physical meaning. Along with the above

disadvantages, indirect methods have less flexibility for online applications, and for

this reason they have been often limited to offline trajectory optimization. Kim [73]

and Menon [88] show typical examples of the use of indirect methods of trajectory

optimization.

The other group of optimization methods is direct methods. Direct methods con-

vert the optimal control problem (OCP) into nonlinear programming (NLP) using

discretization, or collocation, or parametric approximation of states and inputs, and

then they solve the converted NLP directly with numerical NLP solvers. Direct shoot-

ing [9], direct collocation nonlinear programming [30], pseudo-spectral methods [42],

and the spline-based method [91] are representative direct methods that have been

intensively studied for many trajectory optimization problems. This thesis surveyed

the pseudo-spectral method and the spline-based method as optimization solvers and

finally chose the spline-based method. Details of both methods will be described later.

It is known that direct methods are more robust and flexible because of no need to

derive necessary conditions and, thus, no need for initial guesses for the co-states [9].

However, depending on the level and accuracy of discretization or parameterization,

the dimension of optimization can be varied significantly, affecting the computation

time and the accuracy of the converged solution. Nevertheless, the majority of re-

cent UAV trajectory optimizations has focused on direct methods mainly because of

their computational efficiency compared to the indirect methods. The computational

efficiency of direct methods can be increased when they are combined with receding
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horizon strategy, particularly for the online applications.

Receding horizon trajectory optimization is another way to reduce the computa-

tional complexity wherein the optimization is concerned with only the local segment

or a finite horizon of the entire path, and it computes the open-loop optimal control

or path for that segment. The first part of the computed optimal control is taken for

the control input to the system until a new optimal result arrives, and the procedure

is repeated till the destination is reached. In fact, this type of optimization cannot

guarantee the optimality of the resultant path globally, but it actually provides a

nice way of achieving desired performance along with handling the nonlinear system

with constraints; it is robust to uncertainties, which cannot be obtained by infinite

horizon optimal control; nonetheless, the optimality of the resultant control and tra-

jectory is suboptimal. This optimization scheme is the well-known model predictive

control (MPC) or receding horizon control (RHC). MPC has received wide attention

in the broad field of control theory for the stabilization of nonlinear systems with con-

straints. Mayne [87] made an insightful survey of different formulations of MPC and

its notable stability issues. Jadbabaie [60] proved that augmentation of cost function

with a special terminal cost function named Control Lyapunov Function (CLF) can

guarantee the stability of RHC. Thus, with proven stability and appropriateness to

nonlinear systems with constraints, MPC has been widely used in numerous trajec-

tory planning problems [6, 27, 74, 78, 90, 118], especially for the obstacle avoidance

problems in which the feasibility of the trajectory and the control of the vehicle have

more priority than the optimality of the global path.

In general, direct methods have been used to solve the optimization of MPC

whereas Schouwenaars [114] and other researchers have used mixed-integer linear

programming (MILP) to solve an MPC problem for path planning of UAVs by dis-

cretizing the nonlinear problem into discrete mixed integer and linear programming.

MILP is a powerful mathematical technique to solve linear programming problems

20



www.manaraa.com

having either integer variables or discrete logic. Because general path planning prob-

lems may include online discrete decision processes or discrete variables, MILP has

been considered the primary optimization tool for dealing with such problems, and

CPLEX [2] is the representative solution software for MILP. However, despite many

successful stories, MILP may not be the proper choice for handling the computa-

tional complexity of trajectory planning in dynamically changing environments [114]

because it requires another systematic or analytical formalization process that con-

verts the obstacle environment into MILP formulation, which might be impossible for

online implementation.

1.4 Real-time Nonlinear Optimization Techniques

Although the hardware performance of today’s computers has been enormously en-

hanced recently, the computational complexity of the dynamic optimization problems

has prevented the indirect optimization methods from being used for online applica-

tions, except in the special case of linear unconstrained systems with quadratic cost,

that is, LQR. Most direct optimization methods have been invented to circumvent

the difficulties of the indirect optimization for online applications. As described pre-

viously, direct methods discretize the system states and inputs by using collocation or

approximation to convert the OCP to NLP and solve the NLP with well-established

numerical solvers. Relevant selection of a discretization and an approximation can

efficiently reduce the dimension of the converted NLP, resulting in increased compu-

tational efficiency in numerical optimization, thus significantly reducing computation

time while not affecting the admissible accuracy of the solution.

One special way to reduce the dimension of the optimization problem is to exploit

the concept of differential flatness of dynamic systems. If the dynamic system is dif-

ferentially flat, the states and inputs can be directly expressed in terms of the specific

outputs of the system, named the flat outputs and their derivatives [37]. All linear
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systems and the feedback linearizable nonlinear systems are typical differentially flat

systems. It is well recognized that utilizing the flatness can increase computational

efficiency. Numerical integration of the system equation is unnecessary to get the

states and the inputs. One may effectively find a smooth curve of flat outputs that

satisfies the system dynamics algebraically; therefore, the dimension of the problem

can be significantly reduced from that of states and inputs to the smaller dimen-

sion of flat outputs. A well-known direct numerical optimization technique utilizing

this differential flatness is the Nonlinear Trajectory Generation (NTG), developed by

Milam [91] at Caltech. NTG uses the B-spline parameterization of flat output and

collocation to convert the optimization problem to the NLP, thereby composing the

NLP with variables of B-spline coefficients or control points, and it uses NPSOL [45],

a well-known sequential quadratic programming (SQP)-based NLP solver. NTG can

compute the optimal trajectory fast, and it has been used as the trajectory optimizer

in other applications [58, 92, 95], the previous research [68, 105] of this thesis, and

this thesis as well. However, it is only applicable to differentially flat systems, and

unfortunately many nonlinear optimization problems, if they include complex system

dynamics, cannot be merely treated as flat systems without any level of simplification

of dynamics and constraints.

Unlike the method using differential flatness, the pseudo-spectral (PS) method

is widely applicable to linear, nonlinear, flat, or even differential inclusion systems

[35, 111], and it is gaining a great deal of attention recently. The PS method was

originally developed for solving partial differential equations in fluid dynamics [17],

and over the last few decades it has emerged as one of the major online optimization

tools. PS methods directly convert OCP to NLP by pseudo-spectral approximations

of states and inputs, then they use a numerical NLP solver. It is noted that PS

approximation can provide relatively accurate approximations for smooth functions,

integration, and differentiation, even with a small number of spectral nodes [8], and
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it guarantees an exponential convergence rate [4]. Those are crucial ingredients for

solving a dynamic optimization problem in real time.

1.5 Thesis Contributions

The purpose of this thesis is to present an online trajectory planning framework based

on trajectory optimization to guide rotary-wing UAVs for low-altitude flight in un-

certain environments such as NOE flight. The study stemmed from past research

outcomes on the time-optimal obstacle avoidance approaches in the vertical plane

[68, 93, 94, 105]. This thesis describes the improvements of the previous works to the

real-time trajectory planning for UAVs in three-dimensional space by using a receding

horizon (RH) trajectory optimization to generate the local optimal trajectory, mini-

mizing deviations from the preplanned path as well as avoiding measured obstacles.

To accomplish this objective, some fundamental changes were made to the previ-

ous works: the overall framework was redesigned, the optimization formulation was

changed, A LIDAR was interfaced to detect obstacles, an obstacle grid map gener-

ation algorithm was added, a climb rate limit detection logic was added to detect a

saturation of climb rate during vertical maneuver, and a global path search algorithm

using dynamic programming was added to provide an initial guess or a template path

to the RH trajectory optimizer. The details of the contributions are listed as follows:

• The study of this thesis establishes an RH trajectory optimization scheme for

obstacle avoidance in an uncertain obstacle field. This study adopts the similar

architecture of trajectory generation and vehicle controller in [90, 98], i.e., the

trajectory optimization works as the command trajectory generator by solving

open-loop optimal trajectory within the finite horizon of the maximum sen-

sor range, then the commands are followed by the vehicle controller. This

scheme is used in many similar applications of MPC or RHC but the work here

considers the following features: the use of a simplified model for the vehicle
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plus the flight controller in trajectory optimization, the optimization of three-

dimensional avoidance trajectory over the measured obstacle geometry so that

the problem includes nonlinear constraints, and the practical implementation

of RH trajectory optimization by multi-threaded programming.

• This thesis focuses on the practical implementation of the integrated framework

that can provide the three-dimensional obstacle field navigation capability for

a rotary-wing UAV as well as vertical terrain following. For this purpose, a

sensor, LIDAR, is used to measure the obstacles or terrain geometry in the

vertical plane and the point cloud data from the sensor is sampled and mapped

to a grid of finite area in front of the vehicle to construct the obstacle map

while the vehicle is yawing. In the formulation of optimization problem, the

safety clearance to the complex and unexpectedly changing obstacle geometry

is formulated as a path constraint. This thesis uses basic filling and spatial

filtering in the procedure of obstacle grid mapping, and the mapped grid is

processed with a blob detection algorithm to build a obstacle cuboid, which is

recorded in a database and used for the global path searching

• The path planning of this thesis is actually a hybrid method, an online receding

horizon trajectory optimization in conjunction with a coarse global path search-

ing, which is similar to the approaches in other recent literature on trajectory

planning of UAVs with the combination of global path searching and heuris-

tic local path planning[57, 107] or searching and MPC [78, 90]. However, the

detailed approach of this thesis is slightly different from those previous works;

the approach of this thesis considers an unknown environment, so both coarse

global path searching and local trajectory planning are computed in real time

without any offline processing or computation. For global path searching, this

thesis uses the DP to search the global path to the destination on the cuboid
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obstacle field, which can be constructed online by default, provided before flight,

or received from other vehicles which already traversed the area earlier. The

coarse path is updated at every second, and the local trajectory optimization

uses the coarse path as an initial guess to the optimization process or as the

local template path to be followed. Use of this hybrid approach can improve the

typical weakness of receding horizon trajectory optimization, the possibility of

non-optimality in a global sense, and it can increase the computational efficiency

of the local trajectory optimization by providing feasible initial guesses.

• The integrated framework proposed in this thesis was evaluated in simulations

and flight tests using a rotary-wing UAV test-bed at Georgia Tech. For the

flight test evaluation, the benchmark tests proposed by Mettler et al. [89]

were conducted and the results were compared to the baseline optimal solutions

in [89]. In addition, the 3D obstacle avoidance capability of the developed

framework was demonstrated in a real world environment. The results from the

flight test demonstration are presented and discussed in this thesis.

1.6 Thesis Outline

The previous subsections presented overviews of UAV systems, UAV autonomy, the

future perspectives requiring autonomous maneuvers in uncertain or dynamic obsta-

cle fields, legacy methods and new trajectory planning methods gaining attention for

UAV applications, and the approach of this thesis to obstacle avoidance. In Chapter

2, preliminary mathematical background in conjunction with optimization will be

presented. Chapter 3 will introduce the past studies on the time-optimal approaches,

and the continuous vertical obstacle avoidance that can be used for an optimal ter-

rain following. Chapter 4 will address a logic for climb rate limit detection which is

studied to increase the safety of vertical obstacle avoidance. In Chapter 5, the final

implementation of the framework for three-dimensional trajectory planning will be
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presented in detail and Chapter 6 will provide typical results obtained from simu-

lations and flight tests. Finally, Chapter 7 will draw conclusions of this study and

suggest some ideas for future work.
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CHAPTER II

MATHEMATICAL BACKGROUND

2.1 Trajectory Optimization

The trajectory planning problem might correspond to the casual question, “How we

can make the vehicle safely move from A to B at the same time obtaining ...?” In

fact, the use of optimization techniques is the most natural way of answering such

a question, for it provides a nice mathematical way of computing a trajectory for a

dynamical system that fulfills the demanded objective while naturally taking into ac-

count the system dynamics and subjected constraints. For this reason, the trajectory

planning problem has been a major subject for optimization. In this section, we will

overview the mathematical background of the optimization methods for trajectory

planning.

2.1.1 Generic Nonlinear Optimization Problem Formulation

Let the dynamical system under consideration be mathematically described with the

nonlinear differential equation with the states x ∈ Rn and the inputs u ∈ Rm.

ẋ = f(x, u) (1)

where all the vectors and functions are real-analytic. We want to find the optimal

trajectory, x∗(t) and u∗(t), of Equation (1) in [t0, tf ] that minimizes the cost functional

J = φf (xf , uf , tf ) +

∫ tf

t0

L(x(t), u(t))dt (2)

and the dynamical system is subjected to n0 initial, nf final, and nt trajectory con-

straints respectively given as,
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bl,0 ≤ ψ0(x0, u0) ≤ bu,0

bl,f ≤ ψf (xf , uf ) ≤ bu,f

bl,t ≤ ψt(x(t), u(t), t) ≤ bu,t

(3)

where, the functions ψ0 : Rn×Rm → Rn0 , ψf : Rn×Rm → Rnf , ψt : Rn×Rm×R+ →

Rnt are assumed to be continuous and at least twice differentiable, C2, and the final

time tf is either free or fixed. Practically, the dimension of the state of a three-

dimensional trajectory optimization problem will be 9, with the position denoted

p(t) ∈ R3, the velocity v(t) ∈ R3, and acceleration vector a(t) ∈ R3 in the 3D inertial

coordinate frame, and the acceleration is usually the input.

2.1.2 Optimal Control Problem

Perhaps the most widely-exploited method for addressing trajectory optimization is

formulating the optimization problem as an optimal control problem [14, 15], which

finds the optimal solution from the necessary conditions using the calculus of varia-

tions by forming a controlled Hamiltonian

H(x, u, λ) = L(x, u) + λTf(x, u) (4)

where λ ∈ Rn is the co-state vector. Under the assumption that the Hamiltonian is

continuously differentiable, Pontryagin [103] showed that the optimal control mini-

mizes the Hamiltonian with respect to all inputs of admissible set, u ∈ U .

u∗ = argmin
u∈U

H(x∗, λ∗, u) (5)
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and along with the initial condition, the final condition, and the necessary condition

of the optimality

ẋ = Hλ (6)

λ̇ = −Hx (7)

0 = Hu (8)

λT (tf ) = φf x|t=tf (9)

form the two point boundary value problem and if the final time, tf , is free, we should

include the condition

(φ̇+H)|tf = 0 (10)

Therefore, the optimal trajectory can be completely determined by solving the above

differential Equations (5) through (10) by the numerical methods introduced in [9].

This is the approach taken by most indirect methods. However, although the above

equations provide a computable solution to the problem, the optimal control approach

is not practical for the real-time control of non-trivial systems as stated in the intro-

duction. For this reason, other optimization methods have been proposed to solve

the problem of optimization for the nonlinear dynamical systems, for example, the

direct method.

2.1.3 Nonlinear Programming

The previous section states that the trajectory generation problem can be formulated

as the optimal control problem (OCP). In general, the OCP can be solved by either

indirect or direct methods. Indirect methods are based on the calculus of variations

and the maximum principle solving Equations (5) through (10) numerically; otherwise

the direct method solves the optimization problem by transforming the OCP into a

nonlinear programming problem (NLP).
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The generic NLP can be stated as

min
x∈Rn

f(x)

s.t. bli ≤gi(x) ≤ bui , i = 1, · · · , l
(11)

where f(x) : Rn → R is the nonlinear cost function to minimize, gi(x) : Rn →

R, bli , bui ∈ R are the nonlinear constraint function, lower, and upper boundaries

respectively. The cost and constraint functions are at least C2.

Various numerical methods for finding the local optimum of the general NLP prob-

lem have been well developed and implemented in the software solutions. NPSOL and

SNOPT are the sequential quadratic programming (SQP)-based solvers developed by

Gill et al. [45, 46] and they are perhaps the most widely used solvers for general

NLP problems in many applications. CONOPT [34] is a recent solver based on the

generalized reduced gradient algorithm, MINOS [97] uses the projected Lagrangian

method to linearize the nonlinear constraints and search for an optimal solution in an

augmented Lagrangian form, RIOT [115] uses the adjoint method, and IPOPT [70]

is the large scale sparse NLP solver based on the interior point method (IPM). IPMs

are another popular class of methods known to be effective and reliable for solving

local NLP solutions.

2.1.4 Sequential Quadratic Programming

SQP methods have proved highly effective for solving constrained optimization prob-

lems with continuous nonlinear functions of the objective and constraints and have

been particularly successful in solving the optimization problems arising in optimal

trajectory calculations [46]. The idea of SQP is to solve iteratively the NLP using a

sequence of quadratic programming (QP) sub-problems at any given sequence of xk,

which is major iteration, and then uses the solution of the sub-problem to construct

a new iterate xk+1, which is minor iteration. The iterative procedure is done in such

a way that the sequence xk converges to a local minimum x∗ of the NLP of Equation
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(11) as k →∞.

The NLP formulation of Equation (11) generally can be expressed with the stan-

dard form

min
x∈Rn

f(x)

s.t. c(x) ≥ 0

(12)

where c(x) ∈ Rm and m is the number of constraints in the standard form. Now, we

introduce the modified Lagrangian of the NLP as

L(x, λ) = f(x)− λT c(x) (13)

and then suppose there exists an optimal solution of the NLP, x∗ ∈ Rn, and the La-

grange multiplier λ∗, satisfying the first-order Karush-Kuhn-Tucker (KKT) necessary

optimality conditions:

c(x∗) ≥ 0

λ∗ ≥ 0

c(x∗)Tλ∗ = 0

J(x∗)Tλ∗ − g(x∗) = 0

(14)

where J(·) is the Jacobian of c(·) and g(·) is the gradient of f(·) at any vector x. Note

that x∗ is a stationary point of the optimization problem and it is not necessarily

an unconstrained minimizer of the Lagrangian, unless it satisfies the second order

conditions:

1. The columns of J are linearly independent

2. Strict complementary slackness holds at x∗

3. The Hessian of the Lagrangian with respect to x is positive definite on the null

space of J(x∗), i.e.,

xT∇2L(x∗, λ∗)x > 0

x ∈ Rn, x 6= 0, J(x∗)Tx = 0
(15)
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Both the first order KKT necessary conditions and the second order necessary con-

ditions comprise the second order sufficient optimality conditions of the NLP.

The construction of the QP sub-problem is the same as the local quadratic ap-

proximation of the cost and the constraints at xk

f(x) ≈ f(xk) + g(xk)(x− xk) + 1
2
(x− xk)T∇2f(xk)(x− xk)

c(x) ≈ c(xk) + J(xk)(x− xk)
(16)

and this approximation leads to the following QP subproblem

min g(xk)
Tp+ 1

2
pT∇2f(xk)p

s.t. c(xk) + J(xk)
Tp+ d = 0

(17)

where p = x− xk and d ∈ Rm is the slack variable

In fact, the second order sufficient condition for optimality implies that x∗ is the

local minimizer of the problem:

min
x∈Rn
L(x, λ∗)

s.t. c(x) ≥ 0

(18)

and by the quadratic approximation of L

L(x, xk, λk) ≈ L(xk, λk) +∇L(xk, λk)
Tp+

1

2
pT∇2L(xk, λk)p (19)

The equivalent NLP of Equation (18) can be approximated to the QP sub-problem:

min∇L(xk, λk)
Tp+ 1

2
pT∇2L(xk, λk)p

s.t. c(xk) + J(xk)
Tp+ d = 0

(20)

and both QP sub-problems of Equations (17) and (20) are equivalent from the nec-

essary conditions of optimality.

In fact, the exact calculation of the Hessian of Lagrangian ∇2L might not be

trivial; usually it is difficult to get the Hessian, especially in a large dimensional

problem and it significantly affects the numerical convergence and speed of the overall

SQP method. Most SQP methods use the quasi-Newton approximation of the Hessian

Hk ≈ ∇2L(xk, λk) (21)
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and a key challenge to developing a fast algorithm for SQP is to find an accurate

approximation method. The most popular quasi-Newton method many SQP solvers

are adopting is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update method.

Hk+1 = Hk +
yyT

yT s
− Bkss

TBk

sTBks
(22)

where s = xk+1 − xk, y = ∇L(xk+1, λk+1) − ∇L(xk, λk), therefore the final form of

approximate QP sub-problem is given as

min g(xk)
Tp+ 1

2
pTHkp

s.t. c(xk) + J(xk)
Tp+ d = 0

(23)

Finding the solution of the above QP sub-problem of Equation (23) is another

iterative procedure as stated before. Both NPSOL and SNOPT use SQOPT which is

based on solving a sequence of linear systems involving the reduced Hessian ZTHkZ,

where Z is defined implicitly using the sparse LU factorization. Reduced-Hessian

methods are known as best suited to problems with small degrees of freedom, i.e.,

problems for which many constraints are active [46].

After a QP sub-problem has been solved, SQP methods perform minor iterations

to find new estimates of the QP solution. The classical method is the Newton method

which has quadratic convergence rates but is usually sensitive to the initial point

and fails to converge. More general gradient descent methods converge from nearly

any starting point but have poor local convergence rates due to the problem of low

gradient. Most practical NLP solvers are adopting line search methods that ensure

robust convergence. Line search methods usually vary the step size along the search

direction decided from the current point, as given by this general notation

xk+1 = xk + αk · pk (24)

where αk is the step length and pk is the search direction vector which can be de-

cided with various approaches at every major iterate xk. For general unconstrained
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minimization, the best step length α∗k is the minimizer of the objective cost function

f(xk+1) in the search direction and in some trivial cases, the line search method can

get one shot convergence to the minimum but usually determining a minimizer along

pk is iterative and frequently time consuming.

Another main branch of methods used in minor iteration is the trust region

method. The basic idea of the trust region method is that it changes the region

of the search, that is, the trust region, depending on how well the local quadratic

model

qk(p) = f(xk) +∇f(xk)
Tp+

1

2
pTHkp (25)

matches the actual function evaluation. Typically, the trust region is taken to be an

ellipse that can be decided by the eigen-state of the approximate Hessian Hk. Once

the step based on the quadratic model lies inside the trust region, then the region is

trusted to have the minimum, the step is chosen, and the trusted region is decreased.

On the other hand, if the step based on the model lies outside the region, the step is

taken just to the boundary of the region, then the region is enlarged. Once the step

is chosen, the ratio of the difference of actual function evaluation and the difference

of the model value is computed to decide the direction of trust region modification

and whether to enlarge or shrink, starting from the initial radius given as ∆.

Once the solution of the QP sub-problem (xk, λk) is obtained, the estimates of

the solution (xk+1, λk+1) are determined by a line search or trust region method from

the current solution. However, regardless of whether a line search or trust region

method is used, when the feasibility of the iterates is not maintained, it can be

difficult to choose the proper step length and may result in the failure to converge.

Especially when the problem includes any nonlinear constraint, maintaining feasibility

at every iteration becomes difficult [91]. When such infeasible conditions happen, the

chosen step length should minimize the objective function at the same time reducing

the infeasibilities of the constraints. Merit functions used in NPSOL and SNOPT,
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which is the augmented Lagrange function, are used to guide the improvement of the

feasibility and the optimum at the same time.

Mq(x, λ) = f(x)− λT c(x) +
ρ

c
(x)T c(x) (26)

where ρ > 0 is the penalty value for weighting constraints variation and λ is the

estimated set of the Lagrange multipliers. The proper step length should sufficiently

decrease the merit function.

2.1.5 Conversion of OCP to NLP

As stated before, the optimal trajectory planning problem which is formulated with

the form of OCP can be converted to the NLP problem, and after conversion, the

NLP can be solved efficiently with the solution technique overviewed in the previous

section, the SQP method. There are many conversion techniques for various direct

optimization methods and some of the widely used conversion techniques are well

surveyed by Betts [9] and Conway [24].

2.1.5.1 Direct Collocation

One reliable technique to convert OCP to NLP is the collocation method. Dickmanns

[30] used the collocation scheme to solve the TPBVP of the indirect method and it is

significantly more robust than the shooting method in solving TPBVP. However, the

most useful ideas of the collocation method, known as direct collocation were outlined

by Hargraves and Paris [52] and Stryk [124].

The first step in the collocation method is to break the time domain into small

piecewise intervals of times.

t0 = t1 < · · · < tN = tf (27)

The parameter y of nonlinear programming is the vector of control and states at the

discrete time points, ti, i = 1, · · · , N and the final time tf :

y = [u(t1), · · · , u(tN), x(t1), · · · , x(tN), tN ]T ∈ RN(m+n)+1 (28)
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In general collocations, the input is approximated to be piecewise linear

ui(s) = u(ti) + s(u(ti+1)− u(ti)) (29)

where s = t/(ti+1 − ti) ∈ [0, 1] and the states are approximated with the Hermite

cubic polynomial between discrete points defined in terms of the endpoint values and

first derivatives at the endpoints.

xi(s) = [2(x(ti)− x(ti+1)) + ẋ(ti) + ẋ(ti+1)]s
3

+ [3(x(ti+1)− x(ti))− 2ẋ(ti)− ẋ(ti+1)]s
2

+ ẋ(ti)s+ x(ti))

(30)

To ensure the approximation accurately represents the system differential equation,

the derivative of the midpoint of each polynomial segment, ẋci = ẋi(0.5), is compared

to the evaluation of the system equation using the interpolated states and the inputs,

f(xci , uci). The slopes at the collocation points are

ẋci = − 3

2(ti+1 − ti)
(x(ti)− x(ti+1))−

1

4
(ẋ(ti) + ẋ(ti+1)) (31)

and the defect is defined as given, thus turning the system dynamic Equation (1) into

additional constraints to be bounded at every node

ξ = f(xci , uci)− ẋci (32)

Hargraves and Paris [52] considered the Mayer type cost functions only. If the

problem is a Bolza problem, the problem with terminal plus integral cost, direct

methods need a numerical or analytical quadrature method to integrate the integral

cost. If the cost function is not complex, analytical integration may be simplified by

taking advantage of the piecewise cubic polynomials. However, when the cost function

is complicated or highly nonlinear, an analytic expression for the integral may be too

difficult to derive. In this situation, numeric quadrature such as trapezoidal, Simpson,

or Gauss are more appropriate. Accuracy of the integration is adjusted by dividing

36



www.manaraa.com

up each segment into a given number of sub-nodes but this directly affects the time

required for the solution.

The above transcription method is the most common one but there are many

variations of the direct collocation differing primarily on how the implicit integration

rules are constructed. In fact, recent pseudo-spectral approaches are also kinds of

direct collocations.

2.1.5.2 Pseudo-spectral Method

The Pseudo-spectral (PS) method is another branch of direct collocation techniques

that uses pseudo-spectral collocations and the implicit approximation of the integra-

tion and the differentiation using orthogonal polynomials, also known as PS approx-

imation. It is widely recognized that PS methods have advantages with regard to

accuracy because they use more accurate approximating polynomials compared to

general direct collocation methods, and it is possible to use fewer (and thus wider)

segments, which yields a much smaller NLP problem and obtains the same accuracy

in the solution. The word spectral refers to the error convergence rate with respect to

an increasing number of nodes, and spectral convergence means that error decreases

faster than the rate of O(Nm) for any m > 0, simply meaning that error decreases ex-

ponentially with increasing N . The variants of pseudo-spectral methods use different

discretization schemes for the collocation points and the interpolating functions, and

are generally named for the scheme used. The Legendre pseudo-spectral method uses

the Legendre interpolating polynomial and the Legandre-Gauss-Lobatto (LGL) col-

location nodes, and the Chebyshev pseudo-spectral method uses the Chebyshev poly-

nomial and Chebyshev-Gauss-Lobatto (CGL) collocation nodes; otherwise the Gauss

pseudo-spectral method uses the Legendre polynomial and the Legendre-Gauss (LG)

collocation. The Gauss pseudo-spectral method differs from several other pseudo-

spectral methods in that the dynamics are not collocated at the boundary points,
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which leads to the proper and accurate approximation to the costate [8]. Details

about the spectral collocation methods and the variation of PS methods are well

explained by Garg et al. [42].

Currently, PS methods are well established for the various OCP applications in dif-

ferent forms of implementations and software. Software packages such as DIDO [110]

and GPOPS [106] are representative PS optimization tools which run in MATLAB R©.

PSOPT [4] is an open source software library written in C++.

In the Legandre PS method, time is directly discretized with LGL nodes which

includes both endpoints of the time, that is, t ∈ [t0, tf ] → τ ∈ [−1, 1], using the

mapping relation given by

t =
(tf − t0)

2
τ +

(tf + t0)

2
(33)

and by this mapping, the system of Equation (1) and the cost of Equation (2) can be

transformed as given

2

(tf − t0)
dx

dτ
= f(x(τ), u(τ)) (34)

J = φf (x(1), u(1)) +

∫ 1

−1
L(x(τ), u(τ))dτ (35)

Legandre PS methods and Gauss PS methods uses Legendre polynomials of degree

N given by

Li(τ) =
N∏
j=0
j 6=i

τ − τi
τi − τj

, 0 ≤ i ≤ N (36)

otherwise Chebyshev PS methods use Chebyshev polynomial of degree N at CGL

nodes τi = − cos(πi/N) in [−1, 1]

Ci(τ) = cos(i cos−1(τ)), 0 ≤ i ≤ N (37)

In the Legendre PS method, the states and inputs are approximated with the

polynomial

x(τ) ≈ xN(τ) =
N∑
i=0

xiLi(τ) (38)
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u(τ) ≈ uN(τ) =
N∑
i=0

uiLi(τ) (39)

where xi and ui are given values at node point i. The derivatives of the states can be

approximated by differentiating Equation (38)

ẋ(τ) ≈ ẋN(τ) =
N∑
i=0

xiL̇i(τ) =
N∑
i=0

Dkixi (40)

where Dki is the differentiation matrix given by

Dki = L̇i(τk) =
N∑
i=0

∏N
j=0
j 6=i

τk − τi∏N
j=0
j 6=i

τi − τj
(41)

and evaluating the expression at the LGL nodes gives the (N + 1) × (N + 1) differ-

entiation matrix D

D =



LN (τk)
LN (τi)

1
τk−τi

, k 6= i

−N(N+1)
4

, k = i = 0

N(N+1)
4

, k = 1 = N

0, otherwise

(42)

thus, the system Equation (34) and the cost Equation(35) can be approximated

ẋ(τk) ≈
N∑
i=0

Dkixi =
tf − t0

2
f(xk, uk) (43)

J ≈ φ(xN , uN) +
tf − t0

2

N∑
i=0

wiL(xi, ui) (44)

where the Gauss weights, wi, is defined as

wi =
2

N(N + 1)

1

(LN(τk))2
(45)
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Therefore the NLP problem can be formed by Equations (43) and (44) approxi-

mated from the OCP of Equations (1) through (3)

min
xi,ui

J = φ(xN , uN) +
tf − t0

2

N∑
i=0

wiL(xi, ui)

subject to
N∑
i=0

Dkixi −
tf − t0

2
f(xk, uk) = 0

bl,0 ≤ ψ0(x(−1), u(−1)) ≤ bu,0

bl,f ≤ ψf (x(1), u(1)) ≤ bu,f

bl,τi ≤ ψt(x(τi), u(τi), τi) ≤ bu,τi

(46)

having the unknown variables composed of xi, ui, 0 ≤ i ≤ N .

2.1.5.3 Adjoint Method

The other way to convert OCP to NLP is the adjoint method. The adjoint method

is a direct method that uses a combination of nonlinear programming and shooting

of adjoint variables. In contrast to the collocation method, the adjoint method has

a significantly lower number of decision variables u(ti). In fact, collocation meth-

ods usually require many collocation points to generate usable controls. The adjoint

method uses the backward integration of the adjoint (or costate) system to determine

the gradients of the cost and constraints by the control that significantly contributes

to the robust solution of Equation (11). Bryson and Ho [15] state that numerical

integration of the adjoint variable is quite stable since integration is carried out in

backward time, assuming that the system is stable in forward time. Applying the

adjoint lemma and constructing control deviation history δu(t) such that the cost

function is decreasing, the gradient of the cost function of Equation (2) can be deter-

mined by taking the derivative of the cost

∇uJ(u) =λTc fu + Lu

λ̇ = −fTx λ− LTx , λ(tf ) =
∂φ(x(tf ))

∂x(tf )

(47)
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the gradient of the end point constraint, and the gradient of the state inequality

constraint can be obtained by a similar manner and detailed expressions are shown

in [91].

2.1.6 Differential Flatness of Dynamic Systems

Differential flatness of dynamic systems first introduced and studied by Fliess et al.

[37] provides the efficient way of controlling nonlinear dynamical systems in real time.

If the dynamical system is differentially flat, it is possible to find a set of flat outputs

z = C(x, u, u̇, · · · , u(γ)), z ∈ Rm (48)

with which the states and the input can be directly expressed algebraically:

x = A(z, z, ż, · · · , z(α)) (49)

u = B(z, z, ż, · · · , z(β)) (50)

All linear systems and the feedback linearizable nonlinear systems are typical

differentially flat systems. It is well recognized that utilizing the flatness can increase

computational efficiency. First, numerical integration of the system equation to get

the states and the inputs is unnecessary. Secondly, one may effectively find a smooth

curve of flat outputs that satisfies the system dynamics algebraically. Therefore the

dimension of the problem can be significantly reduced from that of states and inputs

to the smaller dimension of flat outputs.

Mathematically, the change of the states and the input, Equations (49) and (50),

will linearize the system Equation (1) into the trivial system written in Brunovsky

canonical form [37, 67] 
z
(ν1)
1 = ν1

...

z
(νm)
m = νm

(51)

where ν1 = u̇1, · · · , νm = u̇m are controllability indices and z1, · · · , zm are flat outputs,

thus, the system behavior can be expressed without the integration of the system
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Equation (1) by the flat outputs and its finite number of derivatives. This means

that finding the trajectory from x(0), u(0) to x(T ), u(T ) is changed to finding any

smooth curve that connects zk(0) and zk(T ) up to some finite numbers; then the

control input can be recovered by the Equation (50) . Therefore, it is unnecessary to

solve the TPBVP for optimal solution if the system is flat.

This general idea can be traced back to works by D. Hilbert and E. Cartan on

under-determined systems of differential equations, where the number of equations is

strictly less than the number of unknowns. It is an arguable fact that this property

may be extremely useful when dealing with trajectories: from z trajectories, x and u

trajectories are immediately deduced [37].

The point mass approximation of vehicle dynamics that the majority of trajec-

tory optimization problems use is a typical differentially flat system, if we choose the

positions and time as the flat output. Unfortunately though, many nonlinear control

systems may not be easily determined to be flat systems and no general method is

available yet to ascertain the differential flatness of a given system. It is debatable

whether or not the necessary and sufficient conditions for differential flatness exist.

Fliess et al. [37] introduced necessary conditions and Charlet et al. [18] provided suf-

ficient conditions for a class of systems. Moreover, even for differentially flat systems,

currently there is no straightforward way of taking into account the flight envelope

constraints [38]

2.1.7 Parameterization of Flat Output

The previous section introduced that the flatness of a dynamic system can eliminate

the dynamic constraints and thus improve computational efficiency by reducing the

overall problem dimension in finding the control of the system or in the optimiza-

tion problem. If a nonlinear system is flat, the control problem turns out to be a
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problem of selecting the flat outputs and finding the smooth curves that can effi-

ciently approximate the flat outputs. There are many curves that can be used for the

approximation; Fourier series, polynomials, rational segments, and etc, can be used.

The approximation method should be able to accurately represent the curve of

the flat output with a reasonable number of decision variables and should be able to

set the curve to have a level of continuity Ck without adding additional conditions,

i.e., constraints. Local support is also a demanded property of the approximation

that means the change of the control variable of the curve for the interest of local

modification should influence only locally. An approximation method that meets

these requirements is piecewise Bezier polynomials or B-splines. An overview of B-

splines, from which much of the following is derived, can be found in Deboor [28].

A B-spline curve is constructed from piecewise Bezier curves joined together with a

prescribed level of continuity between them. The points at which the piecewise curves

are joined are called breakpoints or knot points. The non-decreasing sequence of real

numbers assigned to the breakpoints is called the knot vector. The smoothness si of a

breakpoint stands for the level of continuity at the breakpoint such that a break point

is Csi−1 continuously differentiable. The order of piecewise curve ki, smoothness, and

multiplicity mi have the following relation and Figure 6 shows an example curve

constructed by a given spline entity.

ki = mi + si (52)

and the required number of control points or B-spline coefficients are determined as

given

pi = li(ki − si) + si (53)
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Figure 6: An example of B-spline curve: 6 intervals (l = 6), fourth order (k = 4), and
C3 continuity at breakpoints (i.e., smoothness s=3); Nine control points are required
to meet these properties and to be the decision variables [91].

The outputs can be approximated by the B-spline relation

z1(t) =

p1∑
i=1

Bi,k1(t)C
1
i

z2(t) =

p2∑
i=1

Bi,k2(t)C
2
i

...

zm(t) =

pm∑
i=1

Bi,km(t)Cm
i

(54)

where pj is the number of control points of the output zj, C
j
i is the control points of

the output zj, and Bi,kj is the basis functions of i -th control point for the j -th output

given by the following recurrence relation.

Bi,0(t) =


1, if ti ≤ t ≤ ti+1

0, otherwise

Bi,k(t) =
t− ti

ti+k+l − ti
Bi,k−1(t) +

ti+k − t
ti+k − ti+1

Bi+1,k−1(t)

(55)

The derivatives of the flat output can be derived from differentiating B-spline
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Equation (54)

z
(r)
j =

pj∑
i=0

B
(r)
i,kj

(t)Cj
i (56)

where the r -th derivative of the basis function is given by

B
(r)
i,kj

(t) =
k − 1

k − i− r

[
t− ti

ti+k+1 − ti
B

(r)
i,kj−1(t) +

ti+k − t
ti+k − ti+1

B
(r)
i+1,kj−1(t)

]
(57)

The B-spline parameters, i.e., li, ki, si, need to be selected carefully to represent

the trajectory of the output sufficiently accurately while maintaining computational

efficiency. Using an increased value for the interval and order may accurately recon-

struct the output history, but it also increases the computational load in the iterative

procedure of optimization. Thus, relevant trade-off should is done depending on the

allowable level of accuracy the problem requires.

2.2 Nonlinear Trajectory Generation (NTG)

Nonlinear Trajectory Generation (NTG), which was developed by Milam [91] at Cal-

Tech, is the direct optimization software library designed to solve the optimization

problem of the constrained nonlinear systems, which is differentially flat, in real time.

NTG provides the functionality to perform transcribing the cost and the constraints

of the optimization problem with manually designated flat outputs of the system, it

conducts the parameterization of the flat outputs with B-splines with given B-spline

parameter sets, and finally performs the NLP solving for the B-spline coefficients that

minimize the cost subject to constraints. NTG uses NPSOL for the NLP solver, so the

main roles of NTG are converting the optimization problem into NLP with B-spline

parametrization and providing functions and interfaces to develop the customized op-

timization software for the user optimal problem. The programming language NTG

uses is C++ and the Fortran-based NPSOL is needed to be linked to the user software.

From the summary of the flatness of the system, if a nonlinear system is differen-

tially flat, we may find the output

z = h(x), z ∈ Rm (58)
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such that the states and the inputs can be recovered from the outputs and its deriva-

tives

x = a(ξ), u = b(ξ) (59)

where the flat output vector ξ is

ξ = [z1, · · · , zr11 , · · · , zm, · · · , zrmm ]T (60)

then the optimization problem Equations (2) and (3) can be reformulated with the

flat outputs

min
ξ
J = φ(a(ξ), b(ξ)) +

∫ tf

t0

L(a(ξ), b(ξ))dt

subject to bl,0 ≤ ψ0(a(ξ0), b(ξ0)) ≤ bu,0

bl,f ≤ ψf (a(ξf ), b(ξf )) ≤ bu,f

bl,ti ≤ ψt(a(ξ), b(ξ), ti) ≤ bu,ti

(61)

and the flat output vector ξ can be determined from the B-spline parametrization by

Equations (54) through (57) and the initial and final values, ξ0, ξf , are found from

the states and inputs x0, xf .

NTG in fact uses the collocation of time give as dc = t0, · · · , tN and N is the

number of collocation points and the quadrature to approximate the integration I =∫ tp
t0
L̄(t)dt.

I ≈ Î =

q∑
i=0

µiL̄(ti) (62)

where the weight µi is determined in advance. The number of quadrature q is decided

from the demanded convergence rate O(q−r) for some integers r ≥ 1.

From Equations (54) through (57) and the collocation points, NTG builds the

sparse collocation matrix that maps the coefficients of the B-splines to the flat output
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and the derivatives at every collocation point.

Zi(t) =



z
(0)
1 (t0)

...
z
(ri)
1 (t0)

z
(0)
i (t1)

...
z
(ri)
i (t1)

...
z
(0)
i (tN )

...
z
(ri)
i (tN )


=



X
X X
...

...
X X ··· X
...

...
...

X X ··· X
X X ··· X
...

...
...

X X ··· X
...

X X ··· X
...

...
...

X X ··· X
X

X X
...

...
X X ··· X





Ci
1

Ci
2

...
Ci

ki−si

...
Ci

2(ki−si)

...
Ci

pi


(63)

By letting

ξ(ti) = [Zi(ti), Z2(ti), · · · , Zm(ti)]
T (64)

finally, Equation (61) can be transformed to NLP

min
U
F (U) ≈ φ(a(ξ(tf )), b(ξ(tf ))) +

N∑
j=0
j=j+q

q∑
kj=0

µkL(a(ξ(tk+j))

subject to bl,0 ≤ ψ0(a(ξ0), b(ξ0)) ≤ bu,0

bl,f ≤ ψf (a(ξf ), b(ξf )) ≤ bu,f

bl,ti ≤ ψt(a(ξ(ti)), b(ξ(ti)), ti) ≤ bu,ti

(65)

where the control variable of the NLP is the B-spline coefficients vector U given by

U =
[
C1

1 · · ·C1
p1
, C2

1 · · ·C2
p2
, · · · , Cm

1 · · ·Cm
pm

]T
(66)

NTG uses NPSOL to find the optimal solution U∗ of the NLP problem given by

Equation (65). The resultant optimal flat outputs, states, and the inputs can be

recovered by the collocation given by Equations (63) and (64) and the flat output of

Equation (59) such that

ξ∗ = G · U∗

x∗ = a(ξ∗)

u∗ = b(ξ∗)

(67)
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2.3 Summary

This chapter presented an overview of the mathematical foundation of the approach

this thesis is based on, the optimal control problem (OCP) for nonlinear dynamical

systems with constraints. In general, OCP does not have a closed-form solution

unless the system is simple and unconstrained, and hence, numerical methods such

as multiple shooting and relaxation techniques are often employed for the solution.

The classical solution method for OCP is the use of Pontryagin’s maximum principle

and the induced necessary conditions, which is known as the indirect method. It

is a well-known fact that accurate solutions can be obtained; however, the indirect

methods are less robust to a poor initial guess, they present difficulties in dealing with

the initial guess of co-states, and the computational load is too high for real-time

applications. For this reason, direct methods have been mostly employed for real-

time applications. Direct methods solve the optimization problem through nonlinear

programming (NLP) having the objective function and the constraints converted from

the original OCP. The sequential quadratic programming (SQP), which is the most

popular numerical NLP solution technique and the one employed in this thesis, was

reviewed and the methods of conversion were introduced: direct collocation, the

adjoint method, and the recently developed pseudo-spectral method. The direct

method this thesis employed is the Nonlinear Trajectory Generation (NTG), which is

a spline-based direct method utilizing the differential flatness of the nonlinear system.

The mathematical background of the differential flatness was introduced, and the

spline representation of the flat output and the overall OCP transcription to NLP

by the collocation was presented to help better understand the background solution

procedure for trajectory optimization.
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CHAPTER III

PRELIMINARY STUDIES

3.1 Obstacle Avoidance Framework Architecture

The base architecture of trajectory planning of this thesis is the two-layer architec-

ture illustrated in Figure 7. The architecture consists of a receding horizon (RH)

optimal trajectory generator and the vehicle controller. The RH trajectory generator

repeatedly finds a feasible open-loop optimal trajectory by solving a finite-horizon

constrained optimal control problem starting from the current state, and the vehicle

controller plays the role of trajectory follower and vehicle stabilizer.

Figure 7: Two-layer architecture of the framework

The vehicle controller considered in this thesis is the adaptive nonlinear controller

composed of the outer-loop and the inner-loop. The outer-loop receives the command

trajectory from the trajectory generator and produces the command attitude to track

the reference trajectory, and the inner-loop controls the vehicle attitude and stabilizes

the vehicle. Even though the vehicle dynamics has a certain amount of uncertainty,

the adaptive controller loops compensate for the errors from the uncertainty with

an adaptive neural network (ANN). Details of the controller design is described in

[62]. The vehicle controller tracks the reference trajectory and maintains the stability
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despite the existence of measurement noise, unmodeled dynamics, uncertainties and

disturbances, which cannot be taken into account in the trajectory generator. This is

a typical advantage of the two-layer architecture that guarantees the system follows

a feasible trajectory along which the system can be stabilized.

Many studies on MPC or RHC for trajectory planning have targeted combining the

trajectory generator with the stabilizing controller into a single trajectory planner. In

this approach, the trajectory planner has the role of optimal controller that computes

the control command to the vehicle actuator. However, although the stability of the

RHC scheme can be guaranteed by the use of a special cost function within a certain

finite horizon [60], in general, the corresponding optimization problem may not be

computationally tractable if it has to account for all the realistic state and input

constraints, unmodeled dynamics, as well as dynamically changing environments.

Thus, an increase of complexity in the optimization problem may cause inadmissible

delays in updating the command or the failure to find feasible solutions, which might

result in a serious loss of stability. On the contrary, in the two-layer architecture, it

is true that only suboptimal solutions can be attainable, as the trajectory optimizer

cannot take into account the complex dynamics of the vehicle and actuators as well

as internal nonlinear constraints. However, if done properly, only a small loss in

performance will be carried whereas the stability will be maintained.

As Figure 7 depicts, the optimal trajectory generator is interfaced with the actual

sensor and is integrated with the existing base trajectory planner in parallel. The base

trajectory planner provides the waypoint navigation functionality for normal flight

operation. Switching between normal waypoint navigation and obstacle avoidance

can be automatic or manually selected by the operator in the ground station. In

fact, the optimal trajectory planner can generate the command to the next waypoint

at the current position, so, it can also provide a limited functionality of waypoint

navigation without smooth transition between waypoints.
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Several studies in the past on obstacle avoidance in uncertain environments have

used obstacle detection sensors. Current state-of-the-art imaging or ranging sensors

such as single camera [132], stereo cameras, scanning laser range finder (laser scan-

ner) [44], and LIDAR [133] have been commonly chosen mostly for reactive obstacle

avoidance. Vision sensors can provide wide and long field of view of the obstacle

field with relatively accurate measurement on obstacle geometry, but they should ac-

company the image processing algorithms, requiring some amounts of computational

power and time, and the size of detectable objects and the measurement accuracy

of camera-based systems decrease rapidly with distance. A camera may be used to

detect a tree but an individual branch of a tree or a telephone wire might be virtually

invisible from a distance, and cameras are absolutely dependent on ambient lighting,

so they can be easily influenced by changes in flight conditions such as time of day

and weather.

On the other hand, radiation type sensors such as laser range finders and LIDARs

demand less computational power and have fast acquisition capability. Small obsta-

cles such as wires and poles can be better detected by this type of sensor and the

measurement accuracy is almost constant within the detection range. However, laser

sensors also have some disadvantages. For instance, specular reflection of the laser

beam causes measurement errors, and a glossy finish on a car or a puddle of water

remains invisible at shallow angles. In addition, the reflected beam may bounce off

another obstacle and return to the sensor, giving a false measurement that makes

the obstacle seem to be farther away than it is [113]. To make matters worse, those

sensors can be blinded by the sun. Laser type sensors mountable on small UAVs have

a limited detection range of less than a thousand feet, and only the exposed surfaces

within the scanning region can be detected as a point cloud. Thus it requires another

processing algorithm and the accumulation of the point cloud data to construct the

complete geometry of the obstacle. In this thesis, a 2D scanning LIDAR fitted to the
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vehicle to measure the vertical profile of obstacles and terrain was used, as shown in

Figure 8. So, in order to build a 3D geometry of the obstacle field, sinusoidal yaw

attitude was commanded to the vehicle during flight.

Figure 8: A LIDAR (Sick LD-MRS HD) fitted to the Geogia Tech UAV test-bed to
scan vertically.

3.2 Time-optimal Obstacle Avoidance

Figure 9: 2D time-optimal obstacle avoidance scheme

Before the integrated framework was fully developed, the optimal trajectory gen-

eration scheme as illustrated in Figure 9 was implemented in the simulation software

without the actual sensor interface, then it was ported to the onboard software of

the Georgia Tech UAV test-bed. Details regarding the software implementation are
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presented in a later chapter. Because it had sensor interface, the trajectory generator

used an obstacle cuboid given by height, width, and depth, which was transmitted to

the framework externally during flight.

Figure 10 given below shows the guidance coordinate frame considered in the

problem formulation. It is an inertial frame of which the x -axis is parallel to the

line connecting the passed and the next waypoint, and the origin is fixed to the

inertial frame. The coordinate switches subsequently whenever the target waypoint

is reached. The position ~p, the velocity ~v, and the acceleration ~a vector are defined

in this frame below.

Figure 10: Coordinate frames defined in the problem formulation

3.2.1 Problem Formulation

Time-optimal trajectory has been traditionally chosen for the problem of optimal

obstacle avoidance [94, 126] because of the practical consideration that a time-optimal

solution can provide a minimized duration of avoidance or a minimum exposure to

threats in hostile environments.

A time-optimal problem is formulated to minimize the final time of maneuver:

J =

∫ tf

0

1dt = tf (68)

and, focusing mainly on the generation of a trajectory, it is relevant to assume that

the trajectory is subjected to the kinematics and simple 1st order model of vehicle
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dynamics with time-constant including the controller delay.

~v =


ẋ

ẏ

ż

 =


u

v

w

 (69)

~a =


u̇

v̇

ẇ

 =


ax

ay

az

 (70)

~̇a =


ȧx

ȧy

ȧz

 =


1
τx

(−ax + axc)

1
τy

(−ay + ayc)

1
τz

(−az + azc)

 (71)

where, (x, y, z) is the position vector with respect to the guidance frame, (u, v,

w) is the velocity, (ax, ay, az) is the acceleration, (axc , ayc , azc) are the command

accelerations, and τx, τy, τz are the time constants of respective accelerations.

The system of Equations (69) through (71) is a typical flat system having the

position (x, y, z) and flat outputs as z1 = x, z2 = y, and z3 = z. Each flat output is

parametrized with a B-spline of the order of k = 6, multiplicity m = 4, smoothness

s = 2, and the number of intervals l = 5. From Equation (53), the selected B-

spline parameters make 14 control points for each B-spline of flat output, forming a

converted NLP with the vector of 42 unknowns as given by Equation (66). In the

selection of B-spline parameters for any flat output, a careful trade-off between the

curve complexity required in the problem and the computation time for optimization

is required. An increase in the number of B-spline coefficients can better approximate

a complex variation of a flat output, but it may result in an increase of computation

time to an unacceptable level for real time optimization.

In fact, Equations (69) and (70) are enough for the trajectory optimization of

small high agility UAVs equipped with electric power of which the dynamics is suf-

ficiently fast to be ignored. However, any desired trajectory has to be realized by
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the vehicle autopilot and the vehicle. The inclusion of the accurate vehicle and the

autopilot model would produce solutions more dynamically feasible and accurate, but

the dimension of the dynamics could easily become high-order, and it can increase

the computational complexity of the solution, causing practical real-time computa-

tion issues. Therefore, for a simplification in representing the vehicle dynamics for the

optimization procedure, the 1st-order model given by Equation (71) has been used

from our past studies on time-optimal avoidance [68, 94]

The time-optimal obstacle avoidance is focused on finding the optimal avoidance

trajectory for a given obstacle cuboid based on the strategy: the vehicle keeps the

current path and approach speed until the last moment, when it should initiate a

horizontally non-accelerating avoidance maneuver. Thus, this avoidance strategy is

designed to get the minimum mission speed deviation as well as minimum duration

to maneuver and on the other hand to maximize the non-avoidance mission path.

3.2.1.1 Initial Constraints

Provided that the vehicle has the constant horizontal speed (ucmd), and from the

strategy described above, the starting point of avoidance can be freed in front of the

vehicle and the zero-acceleration condition can be taken as the initial constraint, as

given by:

~p(0) = [free, y0, z0]
T

~v(0) = [ucmd, 0, 0]T

~a(0) = [0, 0, 0]T

(72)

So, now the optimization problem becomes a problem of finding the optimal avoid-

ance initiation position as well as an avoidance trajectory.

3.2.1.2 Terminal Constraints

Obviously, the final time should be free and the vehicle should be outside of the

obstacle for avoidance. So, in the first preliminary study, as the obstacle was assumed
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to be a cuboid, an intermediate safe waypoint (xsafe, ysafe, zsafe) was selected outside

the cuboid as the terminal position of the avoidance that the vehicle should fly through

at the end of the time-optimal maneuver. In addition to that, a level flight condition

with zero vertical speed and a zero-acceleration condition were selected for the smooth

transition to the returning path after avoidance.

tf = free

~p(tf ) = [x(tf ), y(tf ), z(tf )]
T = [xsafe, ysafe, zsafe]

T

~v(tf ) = [u(tf ), v(tf ), w(tf )]
T = [uf , 0, 0]T

~a(tf ) = [ax(tf ), ay(tf ), az(tf )]
T = [0, 0, 0]T

(73)

where the safe waypoint can be determined from the obstacle rectangular geometry

and the safety clearance ∆rs, and the final speed uf is bounded as given by

xsafe = minxob −∆rs

ysafe =


min yob −∆rs, if |min yob − y0| ≤ |max yob − y0|

y0, if zsafe 6= z0

max yob + ∆rs, if |min yob − y0| ≥ |max yob − y0|

zsafe =


max zob + ∆rs, if ysafe = y0

z0, if ysafe 6= y0

uf = [0, ucmd]

(74)

3.2.1.3 Path Constraints

At any instance of the avoidance maneuver, the accelerations and velocities should be

maintained within allowable boundaries by the performance limit or the envelope limit

like the V-n diagram. This thesis considered that the acceleration was constrained

by the ellipsoidal equation of total acceleration as given by

0 ≤
(

ax
axmax

)2

+

(
ay
aymax

)2

+

(
az
azmax

)2

≤ 1 (75)
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where the maximum values of each acceleration component can be determined from

the vehicle performance limit or the envelope limit.

The velocity of the vehicle can be bounded separately along with the total velocity

0 ≤ u ≤ uU

vL ≤ v ≤ vU

wL ≤ w ≤ wU

VtL ≤
√
u2 + v2 + w2 ≤ VtU

(76)

where the longitudinal speed limit uU is set to the desired command speed ucmd, and

lateral speed limits vL and vU are set to zero for pure vertical avoidance.

The actual climb rate limit wU is closely related to the engine power. Theo-

retically, the climb rate limit can be determined from the maximum excess power

but unfortunately most small rotary-wing UAVs usually are not equipped with any

onboard device to measure the engine power directly, so the power limit should be

estimated indirectly from the other parameters available. Using an inaccurate esti-

mate of the climb rate limit, especially if the value is overestimated, may result in an

unsafe situation in the avoidance where the maximum climb rate is required, as in

the case of detecting a large obstacle at a short distance. The worst case is that the

vehicle cannot follow the optimal command trajectory, resulting in a collision because

the command trajectory is actually infeasible to the vehicle performance due to the

overestimation of performance limit. This problem occurred during the first flight

test. The flight test result is presented in a later section.

Another point of the formulation is that there is no path constraint related with

the clearance of the obstacle shape, so the computational load is actually less than

it would be if a realistic obstacle shape were used. The optimal problem can be

solved in a relatively short time, and by taking advantage of real-time optimization

techniques, the problem can be solved quickly for multiple times at the moment that

the obstacle geometry is provided. The fast computation of vertical and horizontal
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optimal trajectories are useful in deciding the optimal direction for avoidance as well

as the avoidance trajectory. Figure 11 depicts this concept.

Figure 11: Selection of avoidance direction

3.2.2 Time-optimal Trajectory Using Pseudo-spectral Method

Time-optimal solutions for vertical obstacle avoidance had been explored by different

real-time optimization methods before the development of the obstacle avoidance

framework to integrate the real-time optimal solver. The pseudo-spectral method and

NTG were investigated in such alternative studies. As a pseudo-spectral method, an

open source software library, PSOPT [4], was used to solve the same problem solved

by NTG, and the results were compared for evaluation. PSOPT is written in a C++

and can be used to solve general optimal control problems of continuous nonlinear

systems with constraints. It has C++ programming interface that can facilitate the

OCP problem formulation in programming, automatic differentiation to get Jacobian

and Hessian matrices, automatic identification of sparsity, automatic spectral node

refinement, and selectable NLP solvers, SNOPT [46] and IPOPT [70]. The PSOPT is

capable of solving a more complex optimization problem that has complex nonlinear

dynamic equations, multiphase problems, general nonlinear constraints even with

interior point constraints, and free or fixed initial and terminal times, even with

differential equations with delayed variables.

Figure 12 is an example of the time-optimal trajectory obtained from both NTG
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Figure 12: Time-optimal avoidance trajectories from NTG and PSOPT: Obstacle is
located at x = 700ft, height is 200ft; safe waypoint is set to (680ft, 0.0ft, 220ft);
the climb rate limit is set to 30ft/s; and vertical acceleration boundary is −0.5g ≤
az ≤ 0.5g.

and PSOPT, that shows the optimal trajectories obtained are almost the same using

two different methods. Both solvers compute the suboptimal solutions so the results

from both solvers might be slightly different because of the difference in the detailed

approach to transcription of OCP to NLP and the NLP solvers. In the specific exam-

ple shown in Figure 12, the optimal terminal times given by both solvers are almost

same, tf = 8.89418 by PSOPT and tf = 8.894 by NTG. However, in general, NTG

takes less computation time for the same problem compared to the PSOPT; on the

other hand, PSOPT made it easy to program the computation problem and showed

robust convergences of solutions despite rough initial guesses. The trade-off between

robustness to the initial guess and the computation time should be considered when

choosing the primary real-time optimization solver. Especially for obstacle avoidance,
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fast computation time is critical when the vehicle motion and flight environment are

changing rapidly and unexpectedly. For this reason, NTG was finally selected as the

optimal solver for the framework.

3.2.3 Time-optimal Avoidance of Multiple Obstacles

The problem formulation of the time-optimal avoidance for a single obstacle does

not have any constraint or cost to take into account the shape of obstacle, and actu-

ally the optimal problem only focuses on the trajectory before the obstacle. In case

of multiple obstacle avoidance, the previous approach can be applicable for the se-

quential or phase-wise optimization by segmenting the overall avoidance problem into

small problems between sequences of obstacles, but this approach can end up with a

non-optimal solution for the entire obstacle avoidance. A more appropriate approach

for multiple obstacles is to formulate the obstacle geometry as path constraints, and

one way to represent a simplified obstacle shape such as circle or rectangle is using

the p-norm relation

hi(x, y, z) =

[(
x− xci
a

)p
+

(
y − yci
b

)p
+
(z
c

)p] 1
p

− 1 ≥ 0 (77)

where (xci , yci) is the center position of the obstacle, a is the half length plus clear-

ance, b is the half width plus clearance, c is the height of the obstacle plus clearance.

Figure 13 represents the shape of the unit p-norms. In fact, using Equation (77)

Figure 13: Unit P-norms: p=1, 2, and ∞

to represent the perfect rectangular shape is problematic, for it requires p → ∞ for

rectangles that can easily cause computational difficulties in numerical iteration of
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optimization. For this reason, this thesis used a relatively small number, p=8, to

roughly approximate the obstacle cuboid. Figures 14 and 15 show the example solu-

tions of time-optimal trajectories in the presence of a middle obstacle with different

locations and sizes, showing the effect of the middle obstacle on the variations of the

time-optimal solution.
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(a) no middle obstacle (t∗f = 7.578)
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(b) middle obstacle h = 50ft at 400ft (t∗f = 9.214)
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(c) middle obstacle h = 150ft at 300ft (t∗f = 11.514)

Figure 14: Time-Optimal avoidance for multiple obstacles: the variation of time-
optimal trajectory by middle obstacle; main target is located at 600ft and height is
200ft (including clearance); initial vehicle location is (0ft,0ft,50ft); initial speed is
40ft/s; climb rate and total velocity are limited to 30ft/sc and 50ft/s, respectively.
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(a) no middle obstacle h = 75ft at 200ft (t∗f = 11.704)
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(b) middle obstacle h = 100ft at 200ft (t∗f = 12.425)
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(c) middle obstacle h = 200ft at 200ft (t∗f = 16.374)

Figure 15: Time-optimal avoidance for multiple obstacles: the variation of time-
optimal trajectory by the change of middle obstacle height; initial and constraints
are the same as in Figure 14.
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3.2.4 Time-optimal Avoidance of Terminal Manifold

In practical situations, it is better to avoid a tall building by flying around rather

than flying above it. A generic approach for such a situation is to consider the exact

shape of an obstacle but this comes with the cost of increased mathematical and

computational complexity. Assuming that the sensor can detect any arbitrary shape

of an obstacle within its measurement range, the optimal trajectory should skim the

area occupied by obstacles in a plane perpendicular to the flight velocity at the final

time tf . This arbitrary shaped area occupied by single or a group of obstacles is

defined as the terminal manifold. Figure 16 shows the concept of this avoidance

problem.

Figure 16: Concept of time-optimal avoidance for the terminal manifold

In order to solve the time-optimal trajectory for a terminal manifold, the problem

needs an extra constraint to the original formulation consisted of Equations (68)

through (76), replacing the terminal constraints of Equations (73) and (74).

xsafe = xmf

ysafe = ymf = free

zsafe ≥M(ymf )

(78)

where xmf is the longitudinal position, ymf is the arbitrary lateral position at xmf ,

and M(ymf ) is the height of the manifold at ymf . The shape of the manifold is
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considered to be arbitrarily given by the discrete points on the manifold. For this

reason, the manifold is interpolated with the cubic spline interpolation which enables

the continuous approximation of arbitrary shape given by discrete points as well as

the derivatives at any point on the manifold outline.

(a) y0 = −100ft (b) y0 = 0ft

(c) y0 = 100ft (d) y0 = −200 ∼ 200ft

Figure 17: Time-optimal avoidance for arbitrary terminal manifold: The manifold is
located at 500ft, initial vehicle longitudinal location is at 0ft, height is 50ft, initial
velocity is 50ft/s.

Figure 17 shows the time-optimal trajectories for a given terminal manifold de-

pending on the initial lateral position of the vehicle. The approach could find relevant

optimal trajectories; when the vehicle is located initially at side of the manifold, Fig-

ure 17(a) and (c), the solution trajectory seeks the nearest points on the manifold,

whereas when the vehicle is located relatively at the center, the solution finds the
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trajectories to the valley in the middle of the manifold, see Figure17(b).

The terminal manifold approach was later extended to the problem of multiple

layers of the manifold, assuming the slice of arbitrary obstacle geometry can be pro-

vided during flight. Figure 18(a) shows the time-optimal solution for the three layers

of manifolds detected subsequently at the end of the previous layer, and Figure 18(b)

represents the case that the same layers are detected at once initially. A comparison

of both results reveals the fundamental aspect of the local trajectory optimization:

local optimum solutions do not guarantee the global optimality.�

(a) sequential detection (t∗f = 10.54)�

(b) simultaneous detection (t∗f = 6.42)

Figure 18: Time-optimal avoidance for arbitrary multiple manifolds
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3.2.5 Flight Test Evaluation of The Real-Time Optimizer

The time-optimal avoidance approach was implemented in the simulation tool, the

Georgia Tech UAV Simulation Tool (GUST) and the onboard software of the GT-

Max, the Georgia Tech rotary-wing UAV test-bed, and the in-flight real-time optimal

trajectory generation capability using virtual obstacle data was tested in a flight test.

Details of the GUST and GTMax system are presented in [64, 65]. Figure 19 shows

the implementation of the framework for the first flight test. The framework has been

improved and the software implementation and integration of the final framework are

presented in Chapter 5. As depicted in Figure 19, the optimal avoidance trajectory

generation module, named INTOPTOA, was embedded in the Onboard2 computer

of the GTMax without the sensor.

Figure 19: Software implementation for the first flight test

The avoidance maneuver was conducted for the virtual obstacles which were pre-

pared on the ground and transmitted to the vehicle while it was flying over the

preplanned test trajectory mainly for safety reasons. The obstacle data includes the

detection trigger, range, height, width, and depth of the obstacle. The detailed values

of the data are presented in Figure 20, and the limit parameters, shown in Table 1,

were chosen to be smaller than those expected in the simulation model to lessen the

aggressiveness of the avoidance maneuver. At the flight test, the clearance distance
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was set to 10ft in the vertical plane and the horizontal clearance was determined

automatically by the available acceleration, the flight speed, and the marginal com-

putation delays, approximately set to 100ft during flight.

Figure 20: Time-optimal flight test cases and avoidance conditions

Table 1: Limit values for the flight test
ax, ay -0.3g ∼ 0.3g
az -0.5g ∼ 0.5g
w 30ft/s (for all case),

25, 20ft/s (for case 0)

Figures 21 through 26 show the flight test results for each of the cases in Figure

20, which show the position command and response, and the climb rate command

and response. The commands (plotted in red) were computed in real time as expected

in the simulation, but in most vertical avoidance, the responses (plotted in blue) did

not follow the commands as expected in the simulations, except for the horizontal

avoidance case (Figure 23) and the vertical avoidance with a climb rate limit of

20ft/s (Figure 26). In the most severe case of vertical avoidance, case 3 with the

short detection range, the vehicle actually collided with the obstacle in virtual space,

but when the climb rate limit was decreased to 20ft/s, the vehicle could appropriately

follow the command trajectory as expected in the simulation, as seen in Figure 26.
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The flight test results were different from those expected in the simulation model

(unlike the flight test results, the simulation indicated that the vehicle would follow

the command trajectory well). However, compared to the vertical avoidance, as shown

in Figure 23, the horizontal avoidance trajectory did not show a significant lag to the

command trajectory. From these results, the actual maximum climb rate was around

20ft/s, and the maximum available power in the simulation model needed to be

modified for a more accurate simulation. In order to validate this fact, a simulation

was done by changing the maximum engine power, and when the maximum engine

power was decreased by about 25%, the simulation could produce a similar output to

the flight test result as seen in Figure 27.
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Figure 21: Time-optimal flight test case0
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Figure 22: Time-optimal flight test case1

The results of the flight test cannot be mainly attributed to the decrease of the

engine power since the variation of actual vehicle weight, the change in aerodynamic
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drag, the weather, and other unknown effects might also have contributed to the

results. However, the flight test and the simulation results revealed that using the

inaccurate envelope limit could endanger the vehicle during an avoidance maneuver.

Therefore, it should be noted that the selection of the feasible envelop limit parameter

and using an accurate value for that parameter are important for avoidance trajectory

generation by the optimization.

Figure 23: Time-optimal flight test case2
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Figure 24: Time-optimal flight test case3
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Figure 25: Time-optimal flight test case0 with climb rate limit of 25ft/s
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Figure 26: Time-optimal flight test case0 with climb rate limit of 20ft/s
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Figure 27: Comparison of time-optimal flight test case0 (left) to the simulation with
decreased engine power (right).
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3.3 Continuous Vertical Optimal Obstacle Avoidance

The time-optimal approach for avoidance was extended to the optimal avoidance with

the real sensor interface. A LIDAR was selected to measure the obstacle and terrain

profile in front of the vehicle within a finite range, so the continuous contour of the

terrain and the obstacle was available for the optimization. However the key changes

in the optimization scheme arose from the use of the sensor, so that there was no

longer complete knowledge of an obstacle on the infinite horizon of the obstacle field,

thus the scope of the optimization had to be limited to the sensor range. Practically,

laser-type sensors mountable on small UAVs have a relatively small range, less than

thousand feet, at most.

The finite range of the sensor required a new optimization approach to determine

the optimal trajectory within the sensor range and to update the solution continu-

ously, as the measured obstacle and terrain contour change as the vehicle advances.

The receding horizon trajectory optimization scheme was first applied to this problem

of continuous vertical optimal avoidance, and Figure 28 depicts this concept.

Figure 28: Concept of receding horizon trajectory optimization for vertical obstacle
avoidance

Along with the change in the optimization scheme, the objective of the trajectory

planning was also changed from the time-optimal avoidance to the optimal terrain
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following (TF) and to nap of the earth (NOE) flight. In TF or NOE situations, as

described in the introduction, minimizing the deviation from the terrain or the desired

height have more significance than the time-optimal maneuver that may result in a

large height deviation from the terrain. Figure 29 compares fundamental differences

in the two optimal trajectory solutions over the same obstacle geometry.

Figure 29: Comparison of example optimal trajectories: the time-optimal vs the
minimum height deviation.

3.3.1 Problem Formulation

The trajectory optimization for minimizing the height deviation from the terrain

contour can be formulated using the height difference as the term of cost

J =

∫ tf

0

(z(t)− zo(t)) dt (79)

where zo is the height profile of the terrain or obstacle. The system dynamics given by

Equations (69) through (71) can be used for this problem too, but other constraints

need to be changed.

At first, the current vehicle position, velocity, and acceleration is set to the initial
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constraint instead of the free position and level flight condition in Equation (72)

~p(t0) = [x0, y0, z0]
T

~v(t0) = [u0, v0, w0]
T

~a(t0) = [ax0 , ay0 , az0 ]
T

(80)

and the terminal time, position, and velocity are free but the terminal acceleration is

set to zero-acceleration.

tf = free

~p(tf ) = [xf , 0, zf ]
T , xf ≤ Rsensor, zf ≥ zo(xf ) + rs

~v(tf ) = [uf , 0, wf ]
T , 0 ≤ uf ≤ uU , wL ≤ wf ≤ wU

~a(tf ) = [0, 0, 0]T

(81)

where Rsensor is the maximum sensor range, and rs is the clearance distance.

The acceleration and velocity should be confined within the boundary given in

Equations (75) and (76) at all moments of the flight, and in addition, this problem

formulation requires an extra path constraint that height should be constrained in

order to give safety clearance rs above the terrain or obstacle contour.

z(t) ≥ max(zo(x(t)) + rs, zmin) (82)

where zmin is the minimum allowable height and the vertical contour of the terrain zo

is interpolated by the longitudinal position x from the points measured by the sensor.

3.3.2 Simulations

The simulation of the new vertical obstacle avoidance framework was done by re-

newed implementation of the problem formulation and the sensor model. Details on

implementation of the simulation are presented later in Chapter 5. Figure 30 shows

a captured scene in GUST during vertical obstacle avoidance. By using the modified

framework, typical cases of the vertical avoidance were simulated to investigate the

performance of the framework, and they are presented as Figures 31 through 33.
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Figure 30: Real-time simulation scene in GUST for vertical optimal avoidance: Green
region represents the sensor scan plane; Blue line is the real-time optimal command;
Yellow line is the response trajectory.

Figure 31 is for the simulation with 10ft/s of command horizontal speed, Figure

32 is for 20ft/s, and Figure 33 is for 30ft/s, respectively. The height clearance is

20ft, the maximum climb rate is 20ft/s, and the maximum descent rate is 15ft/s for

all cases. Figures 31 through 33 show that if the command horizontal speed is low,

flight height tends to be close to the obstacle contour and the command trajectory

can be followed with less perturbation.
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Figure 31: Optimal vertical avoidance example: Vcmd = 10ft/s.
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Figure 32: Optimal vertical avoidance example: Vcmd = 20ft/s.

100 200 300 400 500 600 700 800 900 1000 1100
0

20

40

60

80

100

X(ft)

Z
(f

t)

Optimal NOE avoidance simulation
Trajectory Profile

 

 

Optimal command

GTMax response

100 200 300 400 500 600 700 800 900 1000 1100
-20

-10

0

10

20

30

40

X(ft)

V
el

.(
ft

/s
ec

)

Velocity Profile 

 

 

Ucom

Wcom

U

W

�

Figure 33: Optimal vertical avoidance example: Vcmd = 30ft/s.
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Figure 34 shows an example simulation of sensor saturation, in which the sensor

could not detect the actual height of the obstacle. In the figure, when the sensor

is saturated, the optimal solution becomes a decrease in horizontal speed to nearly

zero while the vertical speed increases to go over the obstacle, and after the sensor is

recovered, horizontal speed returns to the command speed of 20ft/s.
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Figure 34: Optimal vertical avoidance example: Vcmd = 20ft/s and sensor satura-
tion.

3.3.3 Flight Test

The flight tests of the receding horizon vertical obstacle avoidance were conducted

three times. In the first flight test, the trial for avoidance flight using LIDAR was

aborted because of the false measurement from the sensor. LIDAR gave unidentifiable

noisy outputs near the vehicle. Later it was presumed that the pollen density in

the air of the spring season affected the highly sensitive sensor giving very noisy

measurements.

The second test was attempted in fairly clear weather, and the sensor did not react

to the ambient air conditions. At first, an open loop test was done to check the sensor
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measurement and real-time trajectory generation, then the closed-loop test followed.

The test results are presented in Figures 35 through 38. At the second trial of the

test, after avoiding the primary target, a tree of 60ft in height, the vehicle suddenly

began to sink to the ground, failing to follow the command trajectory, and the pilot

had to manually take over the vehicle, barely preventing a hard crash. Figure 37

shows that the vehicle could not follow the command trajectory after the avoidance

of the tree. In addition to the incident of the test, the sensor could not measure the

actual frontal shape of the tree at the nominal measurement range of the sensor while

the vehicle was approaching the tree. Actually it detected the height of the middle

of the tree at a distance of about 100ft, which was half of the nominal range of the

sensor. This decreased range and the inability to detect the frontal region of the tree

in the far distance resulted in delaying the avoidance less than to 100ft before the

obstacle. When the vehicle finally reached the tree, the sensor could measure the

actual height of the front of the tree, resulting in the shift of the command height by

the command modification logic in the framework. These shifts of command height

can be seen in both avoidance trials in Figures 35 and 37. The reason for this latency

and inaccuracy of laser measurement was not fully investigated, but similar inaccurate

measurements, especially for trees without dense leaves, have occurred repeatedly in

follow-up flight tests.

The third flight test of vertical obstacle avoidance was conducted at the Mckenna

MOUT site in Fort Benning, Georgia, in late June 2011. The avoidance took place

three times over a group of small trees about 25ft in height with a clearance of 50ft.

The horizontal speed was chosen as 10ft/s. The test results are presented in Figures

39 and 40. As seen in Figure 39, the command height adjustment over the tree

occurred because of sensor measurement, similar to the previous flight test. Overall,

the vehicle followed the command trajectories successfully, resulting in the terrain

following over the contour line of trees.
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Figure 35: Flight test results of vertical trajectory (left) and climb rate (right):

sensor measurement (black mark) could not detect the frontal contour of tree (dot).

Figure 36: Horizontal trajectory and sensor hit (red marks) of the first trial
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Figure 37: Last trial of flight test: sensor measurement was similar to the first trial;

during rapid descent after the tree, the vehicle suddenly sank with a higher rate of

descent than the command and actually touched the ground.

Figure 38: Horizontal trajectory and sensor hit (red marks) of the last trial
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Figure 39: Flight test at McKenna MOUT site: vertical response trajectories (upper)

and climb rate responses (lower); command trajectory jumps occurred over the tree

line

Figure 40: Flight test at McKenna MOUT site: horizontal path and sensor hits.
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3.4 Summary

The preliminary studies on optimal obstacle avoidance and their results were pre-

sented in this chapter. Using trajectory optimization for optimal obstacle avoidance

is the main idea of this thesis. The basic approach evolved from the past study on

a single time-optimal avoidance for a virtually provided rectangular obstacle. The

time-optimal avoidance of a single obstacle, multiple rectangular obstacles arranged

in line along the path, and the arbitrary terminal manifold were studied. Stemming

from the past approach, the first practical implementation of INTOPTOA, the in-

tegrated optimal obstacle avoidance framework, for vertical trajectory optimization

with the actual sensor integration was developed. INTOPTOA is a receding hori-

zon trajectory-planning framework for obstacle avoidance, and it is also applicable to

terrain following over unknown environments. The basic approach of INTOPTOA,

problem formulation, and the flight test results are presented in this chapter. Unlike

the simulation environment, the framework encountered problems associated with the

obstacle measurements in actual flight, which have to be taken into account in future

practical implementation of the framework: false measurement due to the ambient air

conditions, inaccurate measurements of trees at a distance depending on tree shape

and density, and sudden changes of measurement near to the obstacle.
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CHAPTER IV

LIMIT DETECTION FOR CLIMB RATE

4.1 Estimation of Maximum Climb Rate

Theoretically the maximum rate of climb can be estimated from the excess engine

power which is the power difference between available and required power. The

required power of a helicopter can be roughly estimated by the general approximation

method presented in Appendix A. For the Yamaha RMAX, the base airframe of the

Georgia Tech UAV test-bed, this study uses the required power obtained from analytic

simulations presented in [105], as shown in Figure 41. It is known that the maximum�
Figure 41: Estimated required power of Yamaha RMAX in forward flight

uninstalled power of the RMAX engine is 21hp. Assuming 15 percent loss of the

installed power, the maximum power output recorded in the simulation model was

18hp. With this power output and a vehicle empty weight of 166lb, the maximum

vertical speed would be 40ft/s. If the vehicle weight is increased to 200lb to account

for extra payload, the corresponding maximum rate of climb decreases to 30ft/s, and

for a 250lb vehicle, it decreases to 25ft/s.
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The climb rate limit was determined to be 30ft/s for the first flight test by

this approximation. However, as shown in Figures 21 through 27 in the previous

chapter, the flight test results implied that the actual climb rate limit was lower than

the estimated value. It was assessed that the decreased climb rate was caused by

the excess power being lower than the estimated value. The excess power can be

affected by many factors including: weight, drag, deterioration of engine power, air

temperature, etc. In order to account for these factors, a limit detection method was

developed to change the limit of the climb rate during flight.

4.2 Effects of Overestimated Climb Rate Limit

With the climb rate limit being used as a constraint within the trajectory optimiza-

tion, wU in Equation (76), an inappropriate value of this limit can cause degradation

of safety during climb. If an excessive limit value is used, the trajectory optimizer

might generate an untraceable command trajectory, especially when the avoidance

involves a large obstacle. In addition, the overestimated limit value usually delays

the beginning of climbing so the situation may become worse, decreasing the safety

of the maneuver.

Figure 42 is a simulation example showing how a dangerous situation could develop

when an excessive limit is used. In the simulation, the obstacle height was 180ft and

the clearance was set to 20ft. Maximum available engine power was 11, 500lbf · ft/s

but it was arbitrarily decreased to 6, 300lbf · ft/s to induce a significant degradation

in climb performance. With 11, 500lbf · ft/s power, a climb rate limit of 30ft/s was

attainable, and hence this value was used in the trajectory optimization for generating

the command trajectory. As seen in the simulation result, the actual climb rate was

saturated at 18ft/s due to the restricted power of 6, 300lbf · ft/s. This lowered

the actual climb path to less than the clearance height during the climb maneuver,

resulting in the vehicle touching the obstacle.
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Figure 42: Simulation result with uncertain decrease of engine power: the climb
rate limit is set to 30ft/s (green line) while the power reaches the arbitrarily chosen
maximum power 6, 300lbf · ft/s; the vehicle’s climb rate is saturated at 18ft/s,
resulting in collision with the virtual obstacle.

A similar situation happened during the actual flight test as given by Figure 24.

As seen in the simulation result, the use of an overestimated climb rate limit in the

trajectory optimization might induce untraceable commands. Therefore, detecting

the moment when the climb rate becomes saturated and adjusting the current limit

value used in the trajectory optimization accordingly are useful in preventing an

undesirable command generation, especially in vertical avoidance of large obstacles.
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4.3 Detection of Climb Rate Limit

4.3.1 The Adaptive Controller of the Vehicle

Figure 43 shows the overall block diagram of the adaptive controller. The controller

is a typical model reference adaptive controller composed of the outer-loop and the

inner-loop, and each loop consists of a reference model, a proportional-derivative (PD)

compensator, approximate dynamic inversion, a pseudo-control hedging (PCH) logic,

and an adaptive neural network (ANN). The PD compensator is augmented to the

output of the reference model for the vehicle to track the reference model. The PD

compensator for the vertical motion loop is given by:

apd = Rd(żr − z) +Rp(zr − z) (83)

Figure 43: Block diagram of the adaptive controller [62]

The adaptive controller is designed to make the vehicle follow the dynamic re-

sponse of the reference model while compensating for uncertainties in the model

inversion using the ANN. In the event of actuator saturation, the pseudo control

hedging (PCH) shown as outer-loop hedge or inner-loop hedge is used to remove any

excess command that has caused the actuator saturation. When the vehicle is not

in any limit saturation, such as actuator or performance limit, the vehicle motion is
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expected to be similar to the reference model, and thus, the PD compensator sig-

nal apd should asymptotically go to zero. Otherwise, if the given commands are not

perfectly traceable, the PCH block of the controller internally adjusts the reference

model output to be followed by the vehicle. The PCH reduces the reference model

output when the actuator command is saturated, and thus, it prevents the ANN from

adapting to input nonlinearities arising out of actuator saturation. The ANN gener-

ates the adaptation signal needed to compensate for the tracking error arising due to

the use of an approximate model for model inversion.

The working of the adaptive controller can be seen in Figure 45 for the case of

normal vertical climbing. Figure 46 is for the case of vertical climbing with reduced

engine power. As seen in Figures 45 and 46, the adaptive controller of the vehicle

internally modifies the external commands to traceable reference commands, so the

error in tracking of the reference model by the vehicle is maintained within a small

boundary (see the subplots for tracking errors in Figures 45 and 46).

4.3.2 Limit Detection Logic

Figure 44 depicts the overall structure of the proposed climb rate limit detection

logic. Vertical position and rate commands are shaped through a second-order model

and the shaped commands are subtracted from the corresponding vehicle outputs

to obtain the position and climb rate errors. The model used for the commands

shaping in the limit detector is similar to that of the adaptive controller except that

the hedging part of the adaptive controller is not included in the limit detector. The

vertical position and climb rate errors are combined to obtain a composite error, âpd,

as shown in Figure 44. The composite error is passed through a first-order filter (with

a time constant of τ = 0.1sec for this study), and the output of the filter, āpd, is used

for the detection of the event when the vehicle climb rate is at its limit. When the

vehicle climb rate is at its limit, the vertical position and climb rate errors in the limit
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detection logic increase well above their nominal values, resulting in a sharp increase

in the filtered composite error āpd. Once this error goes above a preset threshold

during a climb phase of the vehicle trajectory, the detection logic triggers to decrease

the current climb rate limit value at a preselected rate, and the modified lower value

of the climb rate limit is used in the trajectory optimization.

Figure 44: Climb rate limit detection logic

4.3.3 Simulation Results

As described in the previous sub-section, once the limit detection is triggered during

climb, the current limit value is reduced linearly at a preselected rate to the current

climb rate, whereas, if the detector is not triggered during an aggressive climb, the

current limit value is gradually increased, again at a preselected rate to its nominal

value. Figure 47 shows the effect of the logic wherein the lowered climb rate limit by

the detection logic enables the safe avoidance of the obstacle for which the avoidance

failed without the climb rate limit modification as seen previously in Figure 42.

Figure 48 presents another simulation result in which the available power is ar-

tificially lowered in order to simulate the case of the vehicle reaching the climb rate

limit during obstacle avoidance maneuvers. As shown in the fourth sub-plot of Fig-

ure 48, the power available is lowered from an initial value of 11, 500lbf · ft/s to

8, 500lbf · ft/s, thus reducing the available excess power for the climb. As the climb

rate limit value used in the trajectory optimizer corresponds to the available power

of 11, 500lbf · ft/s, the reduction in power results in climb rate saturation, causing
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the filtered composite error, āpd, (shown as the dotted red line in the third sub-plot

of Figure 48) to exceed the preset threshold of 15ft/s2. This triggers the limit detec-

tion logic to lower the climb rate limit value (shown as the green line in the second

sub-plot of Figure 48). The reduced value of the climb rate limit is subsequently

used in the trajectory optimization, resulting in a safe avoidance of the first obstacle

shown in Figure 48. After passing the first obstacle, the filtered composite error stays

well below the threshold of 15ft/s2, thus triggering a slight increase in the climb rate

limit during the avoidance of the second obstacle. Prior to the avoidance of the third

obstacle, the power available is further reduced to 6, 500lbf · ft/s. Since the current

value of the climb rate limit in the trajectory optimization is no longer valid with

the reduced available power, the filtered composite error signal, āpd, once again goes

above the preset threshold of 15ft/s2, causing the limit detection logic to decrease

the climb rate limit to the saturated climb rate of the vehicle. For comparison, the

apd signal from the vertical loop of the adaptive controller is also shown in the third

sub-plot of Figure 48. As expected, the magnitude of the apd signal from the adaptive

controller stays low as it represents the tracking error between the hedged reference

model and the vehicle.
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4.4 Summary

Accurate climb rate limit, which is closely related to the excess power of rotary-

wing aircraft, is important in the trajectory generation for low-altitude flights such

as terrain following and nap of the earth. A conservative lower limit value of the

climb rate limit produces vertical flight profiles that may be safe but may also result

in less aggressive obstacle avoidance maneuvers. On the other hand, the use of a

higher estimate of the climb rate limit can increase the aggressiveness of the command

trajectory but may result in the vehicle being unable to follow such a command

trajectory, thus, creating an unsafe situation for obstacle avoidance.

A general method for power estimation, which is summarized in Appendix A, may

be applied to estimate the climb rate limit, but it also requires accurate knowledge

on the related parameters such as weight, drag, and induced velocity, etc. In order to

determine the saturation of climb rate and adjust the climb rate limit value for its use

in trajectory optimization during obstacle field navigation, a simple limit detection

logic is proposed and is evaluated in simulation using the GUST.
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Figure 45: The control of vertical climb in normal conditions: the adaptive controller
follows the reference model; height command from 50ft to 200ft with max. acceler-
ation of 10ft/s2 and speed of 50ft/s; νrm is the reference model output, νpd is the
PD compensator output, νad is the ANN output, and νh is the PCH output.
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Figure 46: The control of vertical climb in abnormal conditions: the available power
is reduced to 60 percent of the nominal; the adaptive controller hedges the reference
model not to follow the command (top row) generating the followable reference model
output; errors (bottom-left) between the reference model and the feedback.
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CHAPTER V

INTEGRATED FRAMEWORK FOR OBSTACLE

AVOIDANCE

5.1 Three-Dimensional Avoidance

The trajectory optimization for obstacle avoidance was extended to three-dimensional

(3D) avoidance within a finite sensor range as depicted in Figure 49. The scope

Figure 49: Scope of receding horizon trajectory optimization

of the trajectory optimization is to find the local optimal command trajectory that

minimizes the position deviation from the preplanned straight path to the destination

while maintaining the clearance from the terrain and obstacles for safety, as well as

remaining feasible within the maneuverability limits and the vehicle dynamics. The

problem is a typical receding horizon (RH) trajectory optimization problem of which

the objective is to find an open-loop optimal control within the sensor range. The

optimization proceeds with the current states at every sample time and the resultant

optimal control is continuously updated until the vehicle reaches the target position.
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RH trajectory optimization has been widely applied to the trajectory planning

for UAVs, as the optimization can nicely describe the trajectory planning problem.

However it presumes that the optimization problem is solvable in real time to control

or guide the vehicle. In theory, the infinite horizon optimal solution is amenable in the

case of searching for the best path for the mission objective; however, in practice for

the problems concerning complex and uncertain obstacle environments, the infinite

horizon optimization can quickly become computationally intractable for real-time

computation. In addition, it becomes unnecessary without full knowledge of the

obstacle field beyond the sensor range.

RH trajectory optimization has obvious advantages: it is definitely computation-

ally less demanding than the infinite horizon optimization, the problem is solvable in

real time, and the solution satisfies subjected constraints as well as vehicle dynamics.

RH optimization solves the local optimums of finite horizon at each sampling time,

which is computationally feasible to onboard computation in real time and has little

impact on closed-loop stability. However, it should be noted that the sequence of

local optima do not guarantee the global optimum over the full horizon. So, it has

been a key issue in RH optimization, especially for trajectory planning purposes, on

how to take into account the discarded tail of the horizon in the problem formulation.

To resolve this issue, past studies on MPC or RHC have used a cost-to-go (CTG)

function [90] or a special final value function such as Control Lyapunov Function

(CLF) [60] as an extra terminal cost in the optimization problem.

An interesting fact is that many studies on the optimization-based trajectory

planning considered the combination of a global path searching and a local trajectory

planning in their approaches to resolve the finite horizon issue. A CTG map can be

obtained from off-line computation over the roughly described entire field of obsta-

cles by using simple path searching methods or computationally demanding indirect

optimization methods, and it is used in the online local trajectory computation to

95



www.manaraa.com

ensure finding the global optimal path. Kuwata [78] used a similar concept to get the

3D optimal path over the cuboid obstacles using a CTG map obtained in offline base

computation over a known field of obstacles. The use of CTG or other value functions

have been considered beneficial to MPC-based trajectory planning, provided that the

remaining portion of the entire horizon is at least roughly known.

Unlike the above approaches, this study assumes that there is no obstacle be-

yond the sensor range while the vehicle flies through the unexplored obstacle field

unless the obstacle cuboids database is provided a priori. From this base assumption,

the optimization problem is formulated to minimize the position deviation from the

straight path to the target position.

5.2 Problem Formulation

The 3D trajectory optimization for obstacle avoidance considered the integrated

weighted quadratic distance to the target position to be minimized as given by

J =

∫ tf

t0

[(
(xT − x(t))

Rx

)2

+

(
(yT − y(t))

Ry

)2

+

(
(zT − z(t))

Rz

)2
]
dt (84)

where (xT , yT , zT ) is the target position and Rx, Ry, Rz are constants to penalize the

position deviation along each axis. By adjusting these constants, the cost function

can induce different avoidance patterns: a relatively smaller value of Rx compared

to Ry and Rz makes the trajectory similar to the time-optimal pattern in which the

optimization minimizes the longitudinal distance from the target primarily, whereas

the opposite setting of the penalty constants can minimize the lateral and vertical

deviation from the straight line to the target, usually resulting in increased proximity

to the obstacle surfaces. So, it is necessary to determine the penalty constants relevant

to meeting the mission objectives and the permissible agility of the vehicle.

By default, the next waypoint-to-go is selected as the target position. So, if

the vehicle is initially located sufficiently far from the waypoint, the cost function

drives the vehicle to minimize the distance initially accelerating to the commanded
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horizontal speed and keeping the flight direction aligned with the initial line of sight

to the targeted point. As the vehicle approaches the waypoint, a waypoint switching

logic is used to switch the target waypoint with the subsequent waypoint of the

preplanned mission data. Another feature related to the target position is that it

might be selected arbitrarily and could even be the moving position of a different

vehicle. So using the proposed cost function with the appropriate set of constraints

can transcribe the trajectory optimization problem to the problem of position tracking

or the formation flight. Position, velocity, and acceleration are defined in the guidance

frame, which is an inertial frame of which the x-axis is aligned in the direction of the

next waypoint from the previous waypoint and its origin is located on that of the

inertial frame as shown in Figure 10. The trajectory is subjected to the kinematics

and simplified 1st order dynamics as given by Equations (69) through (71).

For obstacle avoidance, the trajectory is subjected to several constraints. Obvi-

ously, the clearance from the obstacle geometry O(xob, yob, zob) is the primary path

constraint; the position of the vehicle should be outside the boundary of the obstacle

with clearance distance at any instance expressed as:

rclr(~p(t)) , min
~pob∈O

‖~p(t)− ~pob‖ ≥ Rs (85)

where ~pob = [xob, yob, zob]
T is the obstacle surface coordinate, ~p(t) is the current vehicle

position, ‖ · ‖ denotes the Euclidean norm, and Rs is the safety clearance that can

be determined arbitrarily by the user considering the trade-off between safety and

allowable agility during avoidance.

As noted earlier, the vehicle performance and envelope limits need to be met in

order to protect the structural components of the vehicle from damage. Some of those

limits can be transcribed to the limits on the motion variables such as velocities and

accelerations and can be formulated as path constraints on velocity and acceleration.

This thesis considered constraints on velocity components, the total speed, and the
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total acceleration limit as

0 ≤ u ≤ uU

vL ≤ v ≤ vU

wL ≤ w ≤ wU

VtL ≤
√
u2 + v2 + w2 ≤ VtU

0 ≤
(

ax
axmax

)2
+
(

ay
aymax

)2
+
(

az
azmax

)2
≤ 1

(86)

Here, the vertical speed limits wL and wU need to be selected carefully with consider-

ation for the power limit and the aerodynamic stability in descent at a low-horizontal

speed, especially for rotary-wing UAVs. A low limit of the total speed constraint

is needed to prevent an unnecessary decrease of flight speed during an avoidance

maneuver.

The forward flight speed at the terminal point is left free. The terminal longi-

tudinal position is determined by the measured obstacle horizon which is basically

the farthest detected obstacle range plus margin or the maximum sensor range in

the case that no obstacle is measured. The lateral and the vertical terminal position

is left free but it should be outside the measured obstacle geometry having greater

clearance than the safety clearance. The terminal constraints are summarized as

tf = free

xf =

 xobdetected

x0 +Rsensor

, yf = zf = free

0 ≤ uf ≤ uU

vL ≤ vf ≤ vU

wf = 0

~a(tf ) = free or [0 0 0]T

(87)

where Rsensor is the finite sensor range. Terminal acceleration can be set free or can be

zero for the level and non-accelerating flight condition at the end of the finite horizon.

In general, during mid-course trajectory optimization or for the avoidance of large
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obstacles, free terminal acceleration might be beneficial for finding a more aggressive

trajectory. On the other hand, enforcing zero acceleration at the finite horizon can

make the trajectory leveled at the end and it may initiate an avoidance maneuver

at an earlier point from an obstacle. Simulations with both terminal conditions of

acceleration were carried out for the benchmark cases discussed later in this chapter.

5.3 Integrated Optimal Obstacle Avoidance Framework

Figure 7 depicts the overall structure of the framework, named as INTOPTOA, which

is composed of the RH trajectory generator and the vehicle controller. The RH

trajectory generator is connected in parallel with the existing base planner, and if

the sensor detects obstacles the RH trajectory generator overrides the base planner.

Figure 50 below shows the detailed view of the framework structure in avoidance

mode.

Figure 50: INTegrated OPTimal Obstacle Avoidance (INTOPTOA) structure

When the vehicle is in obstacle avoidance mode, the RH trajectory generator con-

tinuously computes and updates the command trajectory by solving the optimization
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problem at the current state, and the command trajectory is followed by the adaptive

controller, shown as the outer-loop and the inner-loop in Figure 50. As already noted,

the two-layer architecture has the advantage that the trajectory generator does not

need to consider the accurate dynamics of the vehicle, uncertainties, and measurement

errors because the adaptive controller maintains the stability and follows the com-

mand trajectory as closely as possible while compensating for sensor measurement

noise, unmodeled dynamics, and other disturbances. However, it is true that only

suboptimal solutions are attainable, and there might be some loss in performance,

but the loss in optimality and performance might be compensated for by not having

an undesirable impact on the closed-loop system stability.

As shown in Figure 50, the trajectory generator is actually a hybrid trajectory

planner that combines the RH trajectory generation module with the global path

searching module. The combination of the global and the local trajectory planning

is nothing new; it has already been attempted in other research in different com-

binations. However, the fundamentals of the approaches are almost the same:to

complement the incompleteness of the local trajectory planning and the dynamical

infeasibilities of the global path planning.

Other approaches in the past MPC-related studies [6, 27, 78, 90] mostly used the

combination of offline global path searching in a known obstacle field to obtain the

offline cost-to-go values or the rough global path for the template, and then they used

the MPC path planner to find the local optimal path using the cost-to-go values or to

adjust the global path to be dynamically tractable. The hybrid method of this thesis

is different: the global path is computed online using the optimal graph searching

over the approximated obstacle field, represented as cuboids, by the use of dynamic

programming, and the resultant coarse global path is used as the initial guess for the

RH trajectory optimizer. The coarse path can be used otherwise to determine the

intermediate target point for the local trajectory optimization. Details of the method

100



www.manaraa.com

are described in the following sections.

5.4 Obstacle Grid Generation

Unlike the past framework in Chapter 3 which only considered the vertical profile of

the obstacle field in front of the vehicle, this framework includes the obstacle grid

generation module that constructs the surface of the local area in front of the vehicle

using the measured obstacle data for 3D avoidance trajectory generation. The use of a

sensor is an essential requirement for the framework to provide the obstacle avoidance

capability in unknown flight environments, thus a 2D scanning LIDAR was selected

as the sensor. LIDAR produces a point cloud of returned laser-hit positions inside a

scanned region.

5.4.1 Grid Mapping

The obstacle grid generation is basically the mapping of the point cloud on the local

grid, the area of which is defined by 100 × 100 units of distance moving with the

vehicle as illustrated in Figure 51. The coordinate frame of the grid is a moving

frame, the x-axis of which is aligned to the guidance frame. The unit distance is set

by the user considering the maximum sensor range.

Figure 51: Concept of obstacle grid construction

The position vectors in the point cloud array from the sensor are represented as
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the vectors with respect to the inertial frame, thus, the grid mapping is done by the

coordinate transformation from the inertial to the grid coordinates. Every data point

in the grid is shifted in the opposite direction of the vehicle velocity as it moves a

grid unit distance. Once a point is shifted out of boundary it is completely erased.

The LIDAR is mounted on the front of the vehicle to scan vertically as shown in

Figure 8. Thus, in order to measure 3D obstacle geometry, the vehicle is commanded

to make an oscillatory yawing motion with a given frequency and yawing angle. The

sampled point cloud is mapped on the grid with a safety boundary and is continuously

accumulated on the grid if a measured point is inside the grid. The purpose of the

safety boundary and filling the actual laser hit points inside the boundary are to

increase the safety of avoidance, making the avoidance on the roughly represented

grid surface wrap the actual obstacle with a margin. Figure 52 illustrates this concept

of obstacle grid mapping and filling. Every point of the point cloud is mapped and

accumulated on the grid with a discretized horizontal position, so only the highest

point at the same grid position is saved on the grid array. This also contributes to

the conservative construction of the obstacle grid.

Figure 52: Obstacle grid mapping with safety margin

Once the obstacle grid is filled, every grid point is averaged with the neighboring

points within a specified local window to smooth the grid surface.

zfob(xg, yg) =
1

4ab

a∑
i=−a

b∑
j=−b

zob(xg + i, y + j) (88)
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where a, b are the integer values that determine the averaging window by (a × b)δr

and δr is the grid unit distance. The obstacle grid otherwise can be filtered with a

simple 1st order spatial filter:

zfob(xg + 1, yg) = αzob(xg + 1, yg) + (1− α)zfob(xg, yg)

zfob(xg, yg + 1) = αzob(xg, yg + 1) + (1− α)zfob(xg, yg)

α =
δr

δr + τr

(89)

where τr is the spatial distance of filtering greater than zero.

Either filtering or averaging is beneficial to the trajectory optimization, which

requires the gradient of the obstacle surface for the numerical procedure. A smoother

gradient of the obstacle surface can be beneficial to the convergence of the numerical

optimization procedure. Figure 53 is an example of a raw obstacle grid map and the

averaged map from the raw grid during a simulation, and Figure 54 is for the case of

1st order filtering of the raw grid. Figures 53 and 54 show that averaging can produce

a smoother obstacle surface but it may overly blunt the corners of the original grid

map. Thus, careful determination for averaging parameters are required so as not to

lose significant obstacle features, considering the expected characteristics of obstacles

in the mission field.

Obstacle grid generation considered in this thesis is highly dependent on the ro-

bust measurement of the sensor, so it actually may be vulnerable to false measure-

ments. Although the spatial filter and the averaging can smooth out a spiky false

measure, unlike other occupancy map generation methods based on the probabilistic

approaches [3, 27], the confidence of the sensor measurement and its time variation

cannot be accounted for in the current approach. However, for conservative avoid-

ance that places more significance on safety than agility and pursues a low proximity

to the obstacle requiring accurate and robust measurements, this approach might be

sufficient.
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(a) averaging window (15ft× 15ft), δr = 2.5ft

(b) averaging window (30ft× 30ft), δr = 2.5ft

Figure 53: Raw grid (left) and averaged grid (right)

(a) α = 0.143, δr = 2.5ft

(b) α = 0.077, δr = 2.5ft

Figure 54: Raw grid (left) and 1st-order spatial filtered grid (right)
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5.4.2 Cuboid Obstacle Construction

The smoothed or filtered obstacle grid is mainly used for the numerical optimiza-

tion by the RH trajectory generation module. Additionally, the obstacle grid is

used to construct simplified obstacle cuboids for the global path searching. Figure

55 illustrates the procedure of the online cuboid obstacle construction and Table 2

summarizes the details of the procedure.

Figure 55: Online procedure of cuboid obstacle construction

At every sampling time of the global path search module, 1sec in this study,

the current filtered obstacle grid is processed by the obstacle blob detection module

to extract the rectangular regions of obstacles on the grid. The blob detection by

thresholding is used for this process. Once a rectangular obstacle region is extracted,

the height and the area of the region are processed to construct the cuboid, and it

is compared to the cuboids recorded in the database. Depending on the areas and

the locations, the newly constructed cuboid is to be either inserted into the database

or merged with one of the existing cuboids, and the database module in the frame
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manages the change of existing database or the creation of new items. Using a cuboid

to represent an obstacle is mainly to facilitate the global path searching with a lower

computational load: the database can be easily constructed and managed, the data

structure is simple, the processing is easy, and the amount of memory for the large

area of the obstacle field can be reduced so the transfer of the whole database can

be fast. However, the obstacle geometry can be over-simplified, and it might be

inappropriate for representing obstacles like long slanted wires or walls.

Table 2: Online obstacle cuboid creation procedure

Algorithm: Blob detection and cuboid database construction

1. Convert the current grid map into the image array of the height of ob-

stacles.

2. Perform blob detection and create the detected blob lists.

3. Retrieve a blob sequentially from the list and check the area overlapping

with obstacle cuboids saved in the database.

(a) if the blob is inside the existing cuboids, check the height and merge

to the first cuboid.

(b) if the blob is outside or less than the specified overlap ratio to all

existing cuboids, insert into the database as a new cuboid.

(c) if the blob is greater than the specified overlap ratio to one of existing

cuboids, merge it with the cuboid.

4. Save changed database.

5. Clear and destroy the current blob lists and the image array
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5.5 Global Path Generation by Graph Searching

In Graph theory, a graph is a mathematical entity defined as a pair of vertices con-

nected by an edge, and it has been commonly used for network problems like the path

searching of this thesis. In this thesis, directed graph searching is used to find the

global path to the destination while detouring all obstacles, represented as cuboids.

The obstacle cuboids constructed from the obstacle grid are saved as a database

and the database is continuously updated during flight unless it is reset by the opera-

tor. Once any obstacle cuboid is created online or transferred from external sources,

the global path searching goes forward with the procedures: the node construction

around cuboids, validation of feasible graphs, and optimal path searching through

the valid graphs. Figure 56 is an illustration that briefly explains the procedure, and

the detailed algorithm is described in Table 3.

Figure 56: Brief illustration of graph searching

5.5.1 Feasibility Check Using Cubic Polynomial Approximation

The feasibility of any graph is verified in two ways, by checking the intersection by line

and rectangle and by approximating the unit path by cubic polynomial to check the

acceleration limit. It is obvious that the global path determined by the graph search

is represented by the lines connecting nodes from the start (current vehicle position)

to the destination. Because the dynamic feasibility cannot be checked in the graph
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search, the resultant path can easily become partially dynamically infeasible between

the nodes if its length is short and the angle between the line connecting the nodes

and the line to the destination is large. The unit path approximation using C2 cubic

polynomial between two nodes enables a rough check on the feasibility of any unit

graph.

Figure 57: Cubic polynomial approximation of graphs

With the assumption that the approaching speed to the next node is constant,

V = const., and the entry and the exit angles are the same as the angle between

the line connecting nodes and the line of waypoints, as shown in Figure 57, the y

trajectory between the nodes can be represented as a cubic polynomial

y(ti) = a0 + a1ti + a2t
2
i + a3t

3
i (90)

where (x0, y0) = (x(nk−1), y(nk−1)), (xN , yN) = (x(nk), y(nk)), ti = xi−x0
V

, i =

0, 1, · · · , N , and a0, a1, a2, a3 are determined by the boundary conditions.

a0 = y0

a1 = y′0

a2 =
3(yN − y0)− (2y′0 + y′N)tf

t2f

a3 =
2(yN − y0)− (y′0 + y′N)tf

t3f

tf =
xN − x0

V

(91)
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So, the lateral acceleration can be approximated as a simple linear equation by dif-

ferentiating twice

ÿ(ti) = 2a2 + 6a3ti, i = 0, · · · , N (92)

and the maximum acceleration occurs at both ends. Assuming that the initial and

terminal directions are aligned to the waypoint direction, y′0 = y′N = 0, the maximum

lateral acceleration is simply given as

max |ÿ(ti)| = 2a2 = 2
3(yN − y0)

t2f
=

6(y(nk)− y(nk−1)V
2

(x(nk)− x(nk−1))2
(93)

The vertical acceleration also can be checked similarly by simply changing y positions

of the nodes to z positions. Therefore, the possible peak acceleration of any graph

can be easily checked. However, it is a rough estimation based on the assumption

of constant speed and the same angles at both ends. Therefore, it is appropriate to

give some margins in the feasible acceleration of the unit graph so as not to overly

invalidate graphs.

5.5.2 Dynamic Programming

The optimal graph searching is done by dynamic programming (DP), which has been

widely used in the search for the global path in probabilistic roadmap methods and in

visibility graph methods. The theory originated from Bellman’s principle of optimal-

ity, which simply states that if a trajectory is optimal, the end-portion of it also should

be optimal [7]. So, in order to use DP to find the optimal path, each graph should

be evaluated for cost values. DP actually works as a backtracking recursive optimal

cost value finder and node selector based on the imposed cost values on graphs, as

mathematically expressed as:

f(nk) = min
nk∈S(nk)

[ck,l + f(nl)] (94)

where f(nl) is the cost value at a previous optimal segment of the path, so by back-

tracking it is set to zero initially, ck,l is the cost of a graph of node k and l, S(nk) is
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the set of selectable nodes including nk, and f(nk) is the next optimal cost at optimal

node nk. In the case of finding the shortest path, ck,l becomes the length of a graph

or time to travel. By checking the intersection and the violation of the acceleration

limit as given in the previous section, the infeasible graph is set to have a large cost

value so as not to be selected.
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Table 3: Global path searching procedure

Algorithm: Graph construction and global path searching

1. Create nodes around and at the top of the cuboids with clearance distance.

2. Sort the nodes with respect to the distance from current position.

3. Find the nodes pair or group of which each node is close to others within

a specified distance and leave one node and eliminate the rest.

4. Adjust the node height if it is inside other cuboids.

5. Construct the graph array based on the final node set.

6. Compute the cost for each feasible pairs of nodes, and during computation

check the feasibility and assign the cost.

(a) Check the node pairs that intersect any obstacle cuboid, then assign

a big number for its cost value in the graph array.

(b) Check the node pairs that may exceed the acceleration limit, then

assign a big number, based on the cubic polynomial approximation

of the path between nodes.

7. Run dynamic programming to find the optimal sequence of nodes.

8. Construct a path array by interpolating the selected node positions.

9. Clear the nodes and the graph array.

111



www.manaraa.com

5.6 Software Implementation

INTOPTOA was integrated into the Georgia Tech UAV Simulation Tool (GUST) and

the onboard software of the rotary-wing UAV test-bed shown in Figures 58 and 59.

Figure 58: UAV test-bed at Georgia Tech: The base airframe is Yamaha RMAX.

Software implementation in GUST uses C/C++ programming. GUST can provide

a real-time simulation environment, hardware-in-the-loop, and research flight test

operations for any software component or hardware that is to be incorporated into

the UAVs currently being operated by the Georgia Tech UAV research group.

Figure 59: A captured screen during a simulation in GUST

GUST includes models of the sensors, aircraft, and aircraft interfaces, down to

the level of binary serial data, i.e., packets, so it enables injection of model error and
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environmental disturbances directly into the aimed software component or hardware

components. It includes a flexible scene generation capability and re-configurable

data communication routines, enabling a large number of possible hardware-in-the-

loop simulation configurations [63].

The UAV is outfitted with two onboard computers, named Onboard1 and On-

board2. Onboard1 is for vehicle guidance and control, and Onboard2 is for in-flight

computations of experimental functionalities such as visual camera image processing,

vision-based target tracking, formation flight, etc. In order to isolate the vehicle sta-

bility and control from the risk of computation delay or unexpected computational

loop crash during the optimization, INTOPTOA is implemented in Onboard2. Figure

60 shows the current onboard system integration.

Figure 60: The onboard system integration of INTOPTOA

INTOPTOA receives vehicle navigation data, that is, position, velocity, acceler-

ation, attitude, and attitude rate, via data-link. The scanned raw point cloud data

from the sensor, LIDAR (Sick LD-MRS), is filtered and sampled by the sensor in-

terface module in Onboard1 and transmitted through a separately assigned data-link
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channel. The command trajectory computed by INTOPTOA is transmitted to On-

board1 through a data-link and can bypass the base planner in Onboard1.

An important feature of the onboard implementation of INTOPTOA is that the

RH trajectory optimization module of Figure 50 is programmed as a multi-threaded

routine, in order to run the time-demanding optimization process in separate threads

of the Onboard2 processor. This is an important feature for the RH trajectory opti-

mization to work for its original purposes: to use previous computed commands until

the commands are updated, as well as to maintain safe control of the vehicle. The

difference between the single-threading and multi-threading is briefly illustrated in

Figure 61 below.

Figure 61: Conceptual difference in single vs multi-threaded process

As seen in Figure 61, if the RH trajectory optimization module is programmed as a

single-threaded routine, it is obvious that the entire Onboard2 process will be held up

until the optimization is completed, which means that the command to Onboard1 will

be frozen to the last sent until the optimization is finished. This might be acceptable

if the computation time is less than a hundred milliseconds. However, even though

the real-time optimal solver is used, the computation time for the optimization can
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often rise up to a second. Depending on the flight conditions such as speed and

acceleration, even a few hundred milliseconds of a command freeze may cause a serious

problems in command following and eventually impair loop stability. Figure 63 is an

example simulation showing how the single thread optimization can result in unsafe

fluctuations of vehicle motion.

On the other hand, a multi-threaded optimization can remove this risk completely.

In a multi-threaded optimization, the optimization routine is launched with a sepa-

rate thread, so the Onboard2 processor can handle the computation for optimization

and other normal processes simultaneously by the CPU time slicing, which makes

the optimization seem to run independently. This is possible if the computer has

multiprocessors or the CPU is multi-core. Thus the command can be continuously

generated from the previous computation result while the optimization is running and

can be updated with new results as soon as the optimization is finished. The effect of

multi-threading is obvious when we compare Figures 63 and 64. Multi-threading is

not just a means of maintaining loop stability; rather, it is the desired way that any

RHC or MPC works. Multi-threading has other advantages that can facilitate com-

putation: threads share memory and devices so unlike multi-processing, with separate

memory and devices, it allows rapid sharing of information by the shared memory

without inter-process communication protocols, there is no need for manual coding

to eliminate pauses due to hardware response, and it can allow messages or signals

to be received in the middle of a long computation. However, there is a possibility

of serious dead locks, or asynchronous operations. Figure 62 is a brief illustration of

the overall process flow between Onboard1 and Onboard2 during the INTOPTOA

run. Onboard1 and Onboard2 computers shares data through datalinks. The global

path search module in INTOPTOA runs at 1Hz, the obstacle grid generation mod-

ule updates the grid at every 0.1sec, and the optimization module is processed in a

separate thread of Onboard2 processor. The the sampling rate varies depending on
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the computation time for the optimal solution.

Figure 65 is an example 3D avoidance simulation result using INTOPTOA showing

the obstacle grid map obtained while the vehicle is passing by. The interim command

trajectories are continuously changed during avoidance, and the resultant avoidance

trajectory is formed on the concentrated region of the interim command trajectories.

Figure 62: Rough process flow of INTOPTOA

5.7 Summary

The receding horizon optimization was extended to a three-dimensional trajectory

planning. First, the method of generating the local receding obstacle grid was intro-

duced to find the local optimal path over it. Then the combined use of global shortest

path searching and the receding horizon trajectory optimization was proposed, and

for global path searching the local grid map was used to build an approximate obsta-

cle field by cuboid representation. A basic image processing algorithm, blob detection

by thresholding, was used to extract the obstacle cuboid from the obstacle grid. The

global shortest path was determined by dynamic programming over the cuboid ob-

stacle field and the resultant path was used for the initial guess to the local trajectory
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optimizer. The final algorithm was implemented into GUST and the onboard soft-

ware of the UAV test-bed, and to meet the original concept of the receding horizon

trajectory optimization, the trajectory optimization module was programmed to run

in a multi-threaded routine. The effect of multi-threading was verified in simulation.
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Figure 63: Example level flight simulation with single thread optimization: The
overall loop of INTOPTOA and the vehicle controller become unstable.
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Figure 65: Example 3D obstacle avoidance simulation: Intermediate trajectory com-
mand (dotted black lines) are updated as the measured target grid varies.
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CHAPTER VI

SIMULATION AND FLIGHT TEST EVALUATION

6.1 Benchmark Tests

In order to test and evaluate INTOPTOA, six simple benchmark tests proposed

by Mettler [89] are simulated and four of six benchmark cases are tested in actual

flight tests. The summary of the benchmark cases and the baseline time-optimal

solutions are given in Figure 66. The benchmark obstacles consisted of geometric

obstacle primitives which were designed to exercise and evaluate a given capability

of the obstacle avoidance algorithm. The original test configurations described in the

reference have an interval distance of 330ft from the start point, and all obstacles

have a maximum height of 66ft. Start and end point heights of vehicle trajectory are

33ft, and the velocity is required to be zero at both start and end points. The vehicle

maneuverability limits are set to vmax = 10ft/s, vvert = 5ft/s and amax = 1.64ft/s2,

and the clearance is selected as 25ft horizontally and 19.8ft vertically.

Figure 66: Benchmark cases and baseline solutions [89]

The benchmark flight tests included only cases 3 through 6. For safety reasons,

the base flight altitude was increased to 120ft and the virtual sensor measurement
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simulated in the ground control station (GCS) was transmitted to the onboard com-

puters through the data-link during the flight test. So the actual sensor was bypassed

because the test purpose was to evaluate the performance of the optimal trajectory

generation and avoidance, not the overall framework including the actual sensor in

the real obstacle environment.

6.2 Benchmark Simulations

The performance of INTOPTOA for all six benchmark cases was evaluated by the

simulation using GUST and the resultant times from start to arrival at the target

point were compared to the baseline solutions from [89]. In fact, the baseline solutions

are noted as the accurate time-optimal solutions, whereas the simulation results are

obtained by minimizing the integrated weighted quadratic distance to the target point,

see Equation (84). Thus, theoretically the baseline solutions should be smaller than

the results obtained by INTOPTOA. Another point regarding the simulation results

is that although command acceleration and speed are limited to 1.64ft/s2 and 10ft/s,

respectively, the actual response of the vehicle may not follow the command perfectly,

resulting in minor violations of acceleration and velocity constraints. This aspect

needs to be considered while evaluating the benchmark test results.

Figures 67 through 72 present the simulation results for the benchmark cases 1

through 6. Trajectory, speed, and acceleration are plotted to show the overall results

of each simulation. Table 4 summarizes all the simulation results along with the

baseline values of [89]. The times obtained by INTOPTOA are rounded values of

the time difference between the start of the maneuver and when the vehicle reached

the target position. Simulations are also done with different terminal acceleration

conditions, i.e., free and zero terminal accelerations, in order to check the effect of

the terminal condition on the convergence of solutions and on the overall avoidance

maneuver. It is seen that the use of either of the two terminal acceleration constraints,
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i.e., either zero or free terminal acceleration constraint, results in converged solutions

in real time while the resultant overall trajectories for the two cases are very similar.

Overall, the INTOPTOA produced trajectories similar to the baseline solution

even though the optimization did not specifically target a time-optimal solution.

However, these results could be attributed to the fact that the obstacle shapes selected

were simple. In addition, the performance index (see Equation (84)) does indirectly

minimize the time especially when the vehicle is initially positioned on the straight

line joining the start and end point.

Table 4: Comparison of INTOPTOA to baseline time to maneuver

Cases Obstacle Type Baseline 1 OFN2 INTOPTOA (Sim.)3

case 1 Out and back 78.8 84.5 80.0
case 2 Point 39.3 49.2 40.0
case 3 Wall 39.3 54.1 40.0
case 4 Cube 42.1 52.2 42.0
case 5 Wall baffle 41.7 52.5 42.0
case 6 Cube baffle 39.8 51.9 40.0
1 time-optimal solutions by offline computation
2 Obstacle Field Navigation base on MPA+RHC[89]
3 simulation results in case of free terminal acceleration
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Figure 67: Benchmark simulation case 1
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(b) zero terminal acceleration

Figure 68: Benchmark simulation case 2
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(a) free terminal acceleration
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Figure 69: Benchmark simulation case 3
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(a) free terminal acceleration
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(b) zero terminal acceleration

Figure 70: Benchmark simulation case 4

126



www.manaraa.com

(a) free terminal acceleration
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(b) zero terminal acceleration

Figure 71: Benchmark simulation case 5
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(a) free terminal acceleration
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Figure 72: Benchmark simulation case 6
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6.3 Benchmark Flight Tests

INTOPTOA worked well in the benchmark flight tests (see Figures 73 through 80)

except for the benchmark case 3 in the first test as seen in Figure 73. In that case,

INTOPTOA failed to maneuver the vehicle as expected, going around the wall instead

of going over. However, notwithstanding the failure, it revealed the inherent weakness

of pure local trajectory generation using incomplete knowledge of the actual obstacle

geometry. In the flight test, the sensor range was set to 200ft. However, the pretest

simulation used 800ft, thus allowing for the detection of a larger portion of the wall

at the beginning. As can be seen in the simulation result of the benchmark 3 case in

Figure 69, an earlier detection of a large portion of an unknown large obstacle could

result in a successful avoidance. In addition, analysis revealed that the time delays in

transfer of the sensor data and the vehicle attitude errors could also affect the result

of the benchmark 3 case, and those adverse effects were confirmed in simulation as

seen in Figure 81. The unsuccessful result of the first flight test of benchmark case

3 required a determination logic of the sensor measurement saturation in the lateral

direction for large and long obstacles as in the benchmark case 3. The initial solution

generation logic for the RH trajectory optimization was modified to take into account

the fact that the detected obstacle could be larger than what the sensor could detect

at a given instant when the laser returns from the sensor cover the entire field of

view in lateral and vertical directions. As a result of this modification for the initial

solution, the second flight test for the benchmark case 3 succeeded in going over the

wall, as seen in Figure 77.
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Table 5: Summary of INTOPTOA flight test results

Cases Obstacle Type Baseline Sim. 1 FT1 2 FT2 3

case 1 Out and back 78.8 80.0 -4 -
case 2 Point 39.3 40.0 - -
case 3 Wall 39.3 40.0 72.0 41.0
case 4 Cube 42.1 42.0 41.0 42.0
case 5 Wall baffle 41.7 42.0 42.0 44.0
case 6 Cube baffle 39.8 40.0 39.0 40.0
1 Simulation
2 First benchmark flight test (Nov 22, 2011)
3 Second benchmark flight test (Dec 16, 2011)
4 Not tested
* Flight test results are rounded
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Figure 73: 1st benchmark flight test case 3: dotted marks on the obstacle are laser

hits.
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Figure 74: 1st benchmark flight test case 4
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Figure 75: 1st benchmark flight test case 5
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Figure 76: 1st benchmark flight test case 6
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Figure 77: 2nd benchmark flight test case 3
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Figure 78: 2nd benchmark flight test case 4
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Figure 79: 2nd benchmark flight test case 5
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Figure 80: 2nd benchmark flight test case 6

Figure 81: Benchmark case 3 simulation after the first flight test: 10 consecutive

trials of back and forth movement over the wall are simulated with 200ft sensor

range, 0.2sec sensor signal delay, and yaw-roll attitude coupling.
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6.4 Sensor in The Loop Flight Test

After the benchmark tests at the second flight test, the sensor in the loop avoidance for

a tree of about 50ft height was attempted. Figure 82 shows an instance of avoidance

maneuver during the test. For safety, the base flight altitude was set to 60ft and the

clearance was chosen as 50ft. The sensor could detect the actual height and geometry

of the tree, roughly L:60ft×W:60ft×H:50ft as seen in Figures 83 and 84. With the

initial position of the vehicle along the center-line of the obstacle, a lateral avoidance

maneuver with the specified clearance of 50ft required the vehicle to maneuver with

a greater lateral deviation from the straight path to the target waypoint compared

to the vertical deviation, thus INTOPTOA relevantly generated vertical avoidances,

as seen in Figures 83 and 84.

Figure 82: UAV test-bed is avoiding the tree obstacle in the flight test.
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Figure 83: Actual sensor in the loop test over a tree: Red dots indicate the laser hits

on trees.
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Figure 84: Projected views: the vertical avoidance was relevant to the obstacle
geometry for the set clearance.
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6.5 Flight Demonstration

The INTOPTOA was tested and demonstrated at the McKenna MOUT site in Fort

Benning, Georgia, in January 2012. The UAV test-bed flew the closed-circuit course

on the site with two different speed sets, 15ft/s and 25ft/s. The clearances were

chosen as 60ft minimum altitude and 50ft minimum relative distance to obstacles.

A tree with a height of roughly 50ft on the south-west part of the course was selected

as the primary avoidance target and a group of small trees lower than 30ft on the

north-east part of the course were selected as the secondary target. The test was

done by sequentially conducting the back and forth avoidance trials on the primary

obstacle with 15ft/s speed, the closed-course flight at 15ft/s, and the closed-course

flight at 25ft/s. The flight test results are presented in Figures 85 through 88 for the

15ft/s flight and in Figures 89 through 92 for the 25ft/s flight.

Overall, the INTOPTOA algorithm guided the UAV successfully during the flight

test demonstration. Avoidance of the primary target coincided with the expected

result from simulations, referring to the south-west portion of trajectories of the flight

test and the simulation compared in Figure 93. Guidance to the waypoints over the

no-obstacle region was normal, keeping the clearance height of 60ft above the terrain

with a straight path to the waypoints (see Figures 87 and 91). The relative clearance

was maintained above the minimum of 50ft from the measured obstacle geometries

(see Figures 88 and 92), except for a short duration of violation around 200sec in the

25ft/s trial (see Figure 92) which was caused by an abnormal sensor measurement

around the region.

However, during the 15ft/s speed case, two issues associated with the actual

implementation of the INTOPTOA algorithm was detected. First, the INTOPTOA

algorithm caused unnecessary stopping twice at two different way points, which was

later found to be associated with the faulty combination of a safety stop logic and

the waypoint transition logic. Second, an abrupt change in the command trajectory
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occurred during the avoidance of the secondary target. Subsequent analysis and

simulations revealed that an unremoved obsolete logic in the algorithm caused the

abnormal command that veered the vehicle from the proper direction unnecessarily,

though the correct path was recovered subsequently. See the top-right portion of

the flight path in Figure 93(a) which shows the overlapped trajectories of the flight

test and the multi-pass simulations. One pass of the multi-pass simulation and the

abnormal portion of the flight test path are similar to each other. Such abnormal

changes of path happened regardless of the presence of an obstacle in the simulation

trajectories as seen in the bottom-right portion of the simulation trajectory in Figure

93(a).

The test with 25ft/s speed was successful in avoiding both obstacles except that

the sensor was presumed hit by direct sun light or the strong reflected light, causing

the false measurement around the secondary target and pushing the vehicle to the

left of the expected path over that region (see Figure 94). The false laser hit points

were distributed along the line of sight to the sun near the secondary target as seen

in Figure 94. In fact, this is not an unusual but an inherent problem when using

the laser-type sensors. It should be noted that laser sensors have problems related to

specular reflections of laser, less sensitivity on glossy surfaces, and beam bouncing,

all of which can cause errors in the measurements.

The problems associated with the implementation of the INTOPTOA algorithm

discovered from the flight test, except for the false measurement, were later fixed and

verified in simulations. Figure 95 shows a result of multi-pass simulation with the

modified version, demonstrating that INTOPTOA could produce consistent guidance

trajectories for the same McKenna flight test conditions.
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Figure 85: McKenna MOUT site flight test trajectory (15ft/s): Top projection.
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Figure 86: McKenna MOUT site flight test trajectory (15ft/s): Side projections.
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Figure 87: McKenna MOUT site flight test trajectory (15ft/s): Altitude, velocity,

and accelerations.
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Figure 88: McKenna MOUT site flight test trajectory (15ft/s): Relative clearance

to measured maximum height point of obstacle.

140



www.manaraa.com

Figure 89: McKenna MOUT site flight test trajectory (25ft/s): Top projection.
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Figure 90: McKenna MOUT site flight test trajectory (25ft/s): Side projections.
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Figure 91: McKenna MOUT site flight test trajectory (25ft/s): Altitude, velocity,

and acceleration.
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Figure 92: McKenna MOUT site flight test trajectory (25ft/s): Relative clearance

to measured maximum height point of obstacle.
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(a) 15ft/s

(b) 25ft/s

Figure 93: Comparison of flight test trajectory to multi-pass simulation

Figure 94: False laser hits are scattered in the line
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(a) x-y trajectories
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(b) Heights, velocity, and acceleration

Figure 95: Multi-pass simulation for the McKenna MOUT site flight test case of

15ft/s

6.6 Summary

Test and evaluation on the performance of INTOPTOA has been done in simulations

and flight tests. Benchmark tests and the demonstration at McKenna MOUT site

show that the RH trajectory optimization module can generate the command trajec-

tory in real time, that sensor integration to construct obstacle grid works normally,

and that INTOPTOA can provide continuous obstacle field navigation capability

with the real-time optimization technique, as long as the obstacle field measurement

is normal.
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CHAPTER VII

CONCLUSIONS

7.1 Summary

This thesis presents an integrated framework suitable for rotary-wing unmanned aerial

vehicles to conduct low-altitude operations in partially or completely unknown en-

vironments like an urban area. The developed framework is based on the receding

horizon trajectory optimization in conjunction with a fast global path searching.

The concept of the receding horizon trajectory optimization is similar to the well-

known receding horizon control (RHC) or model predictive control (MPC). It solves

a series of trajectory optimization problems formulated as finite horizon optimal con-

trol problems at the current vehicle state, and the open-loop optimal trajectory is

used as the command input for the vehicle. The command inputs are continuously

interpolated from the previously computed optimal trajectory at the current vehicle

position. When the new solution is obtained, the trajectory for interpolation is re-

placed with the new optimal trajectory, and this process is repeated till the vehicle

reaches the target point. Unlike other receding horizon controls focusing on the gen-

eration of a direct control input to the vehicle, the RH trajectory optimization of this

thesis computes the local optimal trajectory to be followed by the vehicle controller.

So, the overall architecture of the trajectory planning for obstacle avoidance can be

considered as a two-layer architecture of trajectory planning.

RHC or MPC is the control technique based on the finite horizon optimization.

It has been applied to large multi-variable process control or plant control in the

petro-chemical and process control industries of a few decades ago, mainly due to the

economic consideration that requires a plant to be operated within limits. Since then,
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this control approach has received wide attention in the broader field of control theory

and other applications because of the benefits of the approach: it can naturally handle

multi-variable systems, it can systematically take actuator limitations into account,

and it allows a system to operate closer to its constraints, thus often resulting in

better performance. Based on these advantages, RHC has recently been applied to

trajectory planning problems of fast dynamical systems. Obstacle avoidance of UAVs

using receding horizon optimization is one such effort. The heart of the receding

horizon optimization and the main propelling force of expanding its applications to

the control of fast dynamical systems is an evolving real-time optimization technique.

This thesis used Nonlinear Trajectory Generation (NTG) as the real-time opti-

mization solver and integrated it into the trajectory planning framework of a UAV

helicopter. NTG is a direct solver which uses the spline approximation of the output

of the flat system and converts the optimal control problem of the trajectory opti-

mization into a nonlinear programming (NLP). The converted NLP is solved by a

sequential quadratic programming-based NLP solver, NPSOL. NTG can compute a

trajectory optimization problem almost in real time, in less than at most hundreds of

millisecond, if the horizon of the trajectory is finite and a low-order spline is enough

for the approximation of the trajectory.

During the initial phase of the development of the framework, this thesis ex-

plored the time-optimal avoidance for a single obstacle, then for multiple obstacles

represented as rectangles, and for multiple layers of arbitrary shape manifolds encom-

passing obstacles in it. The time-optimal avoidance approach for a single obstacle and

the real-time optimization module were integrated to run on the onboard computer

of the UAV test-bed and were successfully flight-tested on virtual obstacles. Perhaps

the most important knowledge acquired from the first flight test was the discovery

of the vehicle power saturation during the avoidance climb maneuver and the fact

that an overestimated value of climb rate limit can produce an infeasible command
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trajectory. As an effort to resolve this issue, a limit detection logic for climb rate was

proposed and was evaluated in simulation.

Along with this safety issue associated with vertical obstacle avoidance, the basic

approach of trajectory optimization was fundamentally changed from the single opti-

mization before avoidance maneuver to the continuous optimization until the vehicle

reaches the destination. The idea of receding horizon trajectory optimization was

incorporated into the trajectory planning framework of this thesis, and the frame-

work was interfaced with an actual sensor, a LIDAR, to measure the geometry of

obstacles and terrain. Finally, the receding horizon trajectory optimization scheme

was extended to the three-dimensional trajectory optimization using a moving local

obstacle grid map constructed from the point cloud data from LIDAR. In addition,

to increase the completeness of the local trajectory generation and to provide an

appropriate initial guess to the real-time optimizer, a coarse global path searching

algorithm was added to the framework.

The global path searching algorithm is based on a graph searching by dynamic

programming over the simplified obstacle cuboids, which can either be constructed

online from the current obstacle grid being used in the receding horizon trajectory

optimization or be transferred to the framework from an external source. A blob

detection algorithm is applied to detect and extract obstacle cuboids from the obstacle

grid, and the framework manages the cuboids to be merged or inserted into the

existing database.

The developed framework was implemented in the Georgia Tech UAV Simulation

Tool (GUST) and was embedded in the onboard computer of the UAV test-bed at

Georgia Tech. An important aspect of the implementation was realizing the actual

scheme of the receding horizon trajectory optimization, that is, using the previous op-

timal trajectory until the solution is updated. This scheme could be realized by imple-

menting the trajectory optimization module as a multi-threaded routine. Simulations
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and flight tests had been done throughout the development of the framework, and

a total of seven flight tests were conducted for the basic vertical avoidance, bench-

mark tests, and the final demonstration of three-dimensional avoidance. Through

such evaluation efforts, the framework was continuously improved to its envisioned

purpose, automatic obstacle avoidance in an unknown environment, thus widening

the feasibility of future application to collaborative low-altitude missions in an urban

environment.

7.2 Conclusions

From the results obtained in this study, the following general conclusions can be

drawn:

• In-flight trajectory re-planning for obstacle avoidance by RH trajectory opti-

mization becomes practical when it is implemented with a real-time solver and

the multi-threaded computation of an optimization process. Without a real-time

solver, in-flight trajectory optimization becomes impractical for a fast dynami-

cal system like a UAV. It is obvious that a fast dynamical system requires fast

updates of trajectory, especially for obstacle field navigation in an unknown

territory. If the vehicle controller is a type of trajectory follower, inconsistent

trajectory commands due to a computational delay in optimization may directly

affect the safety of the vehicle. Multi-threading the optimization process is an

effective way to generate consistent trajectory commands.

• RH trajectory optimization only considers the finite horizon of trajectory for

optimization. Thus, the resultant trajectory does not necessarily guarantee an

optimality in a global sense. This fact is confirmed by the case study on the

time-optimal avoidance of multiple layers of obstacles in Chapter 3, as the local

time-optimal trajectories obtained from subsequent obstacle detection does not
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form a true time-optimal solution that can be obtained at once with the com-

plete knowledge of the obstacle field. Another disadvantage of local trajectory

optimization can be found in the benchmark flight test for case 3. If the vehicle

cannot detect the entire obstacle geometry at a distance, the resultant flight

path can end up with an undesired result. One way of resolving this weakness

of local trajectory optimization is incooperating a fast global path search al-

gorithm using a roughly represented obstacle field beyond the finite horizon of

RH trajectory optimization.

• RH trajectory optimization is an effective method of trajectory planning sub-

jected to multiple constraints including dynamics constraints. However, its use-

fulness largely depends on a robust convergence of the solutions in real time.

If the real-time computation is the main interest, NTG is a suitable solver be-

cause it is fast if a system can be represented as a flat system. However, it is

inherently inapplicable to a non-flat system, and it has difficulty in finding a

converged solution if the initial guess is infeasible. Providing a feasible initial

guess to NTG is critical to the convergence of solution as well as computation

time.

• The previous successful solution can be used as an initial guess for the current

optimization, and it can enhance the convergence of the solutions as well as the

computation time. This thesis employs this technique in actual implementation

of the algorithm, so the overall computation time is reduced. However, the

resultant trajectory tends to maintain the previously computed trajectory un-

necessarily even though the avoidance condition is changed, making the optimal

trajectory different from the previous one. The global path search algorithm

can be used to provide a feasible initial guess for the optimization as well as to
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guide the local optimal trajectory to the global path. In the actual implemen-

tation of the algorithm, the initial guess is sampled from a global path once it

is available.

• Differences in terminal constraints in the formulation of RH trajectory optimiza-

tion may not affect the overall avoidance trajectory, depending on the length of

the horizon. This aspect of RH trajectory optimization is seen in the benchmark

case simulations with different terminal conditions, i.e., zero or free terminal

acceleration. As presented in Chapter 6, the overall trajectories of benchmark

cases with different terminal acceleration conditions do not show notable dif-

ferences. This may be a result of the RH trajectory optimization: only a small

portion of the previously computed trajectory is used as the command to the

vehicle before the command trajectory is updated by the new optimal solu-

tion; hence, the initial part of the optimal trajectory cannot be significantly

influenced by the terminal constraints, especially if the terminal position of the

current optimal path is sufficiently far from the current position.

• RH trajectory optimization provides local suboptimal solutions. Most of MPCs

or RHCs based on direct optimization methods use suboptimal solutions for

their controls or trajectory planning. Apparently, there is a trade-off between

the computation time and the accuracy of the optimal solution. If an opti-

mization problem focuses on an exact optimal solution, solvers based on direct

methods might be insufficient. A combination with other accurate optimization

techniques based on indirect methods may be needed.

• Minimization of the integrated quadratic distance to the target point can be a

suitable objective for a 3D trajectory optimization for obstacle avoidance. With

an appropriate set of weighting factors of the integrated quadratic distance

150



www.manaraa.com

along each axis of the coordinate frame, it may indirectly produce a near time-

optimal trajectory or a trajectory with minimal deviation from the straight path

to target point. As proven in the benchmark simulations and the flight tests

in Chapter 6, the RH trajectory optimization with the selected cost function is

capable of producing an avoidance trajectory closer to the theoretical solutions

that assume complete knowledge of the obstacles.

• Fast and wide measurement of the obstacle field is a basic requirement for the

robust operation of the proposed framework. The limitations to obstacle mea-

surement such as short detection range, narrow scanning volume, and slow 3D

search can impact the overall performance of the trajectory planning. This is

observed in the first flight test for the benchmark case 3. The disadvantages

of the obstacle detection scheme used in this study, i.e., short detection range

and slow yawing to cover the lateral region, can lead the framework to fail

to find the proper avoidance path. The obstacle detection scheme used in this

study may become more sensitive to the requirement of fast and accurate sensor

measurements when the vehicle speed is further increased.

• Overestimated vehicle performance limit can be a significant safety issue during

avoidance. Especially for vertical maneuver of a rotor-craft, this thesis shows

that the use of excessive limits of climb rate in the optimization may result in an

unsafe situation during vertical avoidance. An appropriate method of detecting

the performance limit, like the climb limit detection logic proposed in this thesis

is important for the safety of avoidance as well as for increasing the agility of

avoidance.
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7.3 Recommendations for Future Works

7.3.1 Convergence of optimal solution and back-ups for safety

This thesis shows that real-time receding horizon optimization is useful in trajectory

planning for obstacle avoidance, but this usefulness presumes the optimal solution is

attainable in a short computation time in any situation. However, in reality, issues

such as the existence of an optimal solution, the computation time and the conver-

gence of the numerical optimization always exist and should be carefully accounted

for in the actual implementation of an optimization-based trajectory planning frame-

work. Especially in the obstacle avoidance problem, the sudden appearance of an

unforeseen obstacle at a close distance is a possible situation in practice, and it often

endangers the convergence of the solution because the problem configuration could

easily turn out to be infeasible to the hard constraints. For example, if an obstacle

suddenly appeared within the clearance distance, the optimal solver will not be able

to come up with a new optimal solution satisfying the constraint on the clearance.

In such situations, it might be necessary to relax the hard constraints or to switch to

an alternative reactive avoidance algorithm to prevent a collision.

7.3.2 Hard constraint protection

Even though velocity and acceleration limits are formulated as hard constraints in

trajectory optimization, especially when the vehicle is operating at limit boundaries,

i.e., accelerating with maximum accelerations or flying at maximum velocity, etc.,

actual transient vehicle response generally can violate the limits because the role of

the trajectory optimizer is to generate a reference command, not to regulate feedback

error, so it may not suppress the violation quickly. In addition, the simple 1st order

model of vehicle dynamics plus controller taken in the optimal problem formulation

may not be sufficient to represent an accurate dynamic response in the vehicle ac-

celeration. Thus, the open-loop nature of trajectory optimization and the imperfect
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representation of vehicle dynamic behavior may end up with causing transient vio-

lations of hard constraints on motion variables as the trajectory optimizer usually

drives the vehicle to fly on the hard constraint limits. For example, the optimizer will

produce the command trajectory requiring the maximum acceleration when it senses

a large obstacle at a near distance. If the constraint limits are set to conservative

values implicitly allowing some degrees of violation, the current method of optimiza-

tion is enough, but a too conservative setting of the constraints usually narrows the

space for a feasible solution and decreases the agility of the avoidance that would

be needed in some emergency conditions. On the other hand, larger constraints on

vehicle motion can increase the agility of the avoidance maneuver, but there is a

possibility of further violation of the limits or the generation of a command that the

aircraft simply cannot follow, such as the climb rate limit presented in Chapter 4.

A method of detecting the actual limit of climb rate has been studied and evaluated

in simulation; however, further studies on the hard limit protection of descent speed

and the acceleration limit may be needed to increase safe avoidance capability as well

as agility. One method of avoiding this is to add soft constraints as extra weighted

terms in the cost function, which is similar to a barrier function in the interior point

method, or to add a feedback logic to adjust the current reference command so as to

remain within specified vehicle limits.

7.3.3 Robust sensor measurement and obstacle grid generation

A more intricate method of processing the LIDAR data is needed to establish the

efficient and robust measurement of obstacles. As already described in this thesis,

during the developmental flight tests involving a real sensor, the algorithms were

directly affected by abnormal sensor measurements such as ambient noise detection,

variation of measurement performance on natural obstacles like trees, and false laser

reflections from direct sun light. Especially for a tree, the sensor sometimes showed a
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reduced measurement range of less than 200ft and was unable to detect the top portion

of tree, thus failing to detect its actual height. Those real-world situations suggest

that further study is needed on the filtering of natural factors that can influence

measurement accuracy or cause malfunctions and on alternative methods which can

take into account the categorized obstacle geometric characteristics, time variation of

sensor measurements between samples, inherent false measurement sources, etc. The

probabilistic occupancy map generation method like the certainty-assisted spatial

filtering could be an alternative for this purpose

7.3.4 Need for 3D scanning laser or multi-sensor fusion

In this study, the 3D obstacle search was conducted by oscillatory yawing of vehicle

attitude with vertically scanning LIDAR. Yawing motion is currently the only way to

acquire the lateral field of view for a 3D obstacle field search because the framework

used a 2D scanning LIDAR. In fact, the vehicle yawing, the sensor range, and the ve-

hicle speed are closely related to the overall limit of the obstacle avoidance capability.

The large frontal field of view with a high sampling rate is essential to safe avoidance

trajectory generation, but the realization of it by the oscillatory yawing motion is

limited by the vehicle performance, coupled with translational motion and the actu-

ator saturation. Because the trajectory optimization of the framework only considers

the translational motion of the vehicle, the oscillatory yawing motion can become

a perturbation to the vehicle translation motion variables, so it can be a source of

violation of hard constraints on the velocities and accelerations, and the unnecessary

coupling effect on the translational motion can occur. To sum up, increasing yawing

motion with high amplitude and frequency is the only way to realize a fast and wide

search of an obstacle field, but it may cause actuator saturation, motion coupling,

and degraded trajectory following. On the contrary, decreasing yawing motion results

in slow and narrow updates of the obstacle field and can be a significant problem in
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dense obstacle fields. In the flight tests, because the test speed was chosen to be

relatively slow and the obstacle density was low, the yawing command was set to

mild yawing with 0.2Hz frequency and the 40-degree sweep angle.

In fact, the yawing of the vehicle has contradictory requirements. A fast and large

amplitude oscillatory yawing command may be needed for 3D obstacle field detection

at high speed which may become difficult for the vehicle to follow. However, high flight

speed definitely requires a fast and wide sampling of the obstacle field to achieve safe

obstacle avoidance. This fundamental limitation of the current approach to obtain

the obstacle measurement obviously requires another method to get a fast and wide

measurement of the obstacle field. An actuated sensor mount is one possible way

to use the current sensor. A more fundamental solution would be to find a sensor

capable of 3D scanning. The fusion of different kinds of sensors such as a camera and

the laser sensor could be an alternative method.

7.3.5 3D obstacle map construction

Provided that fast acquisition of the forward obstacle field measurement is possible,

then the current trajectory optimization approach can be extended to a more ambi-

tious avoidance capability, the avoidance through empty holes in 3D space, such as

flight under wires, bridges, branches of tall trees, etc. The current method is not

fundamentally applicable to such high agility flight because the obstacle grid is con-

structed as a surface, abandoning useful information that could be used to build a

volumetric obstacle field. For example, if the LIDAR detected an electric wire, it

would be represented as a wall having the height of the measured wire. Fast sam-

pling of point cloud data from the sensor can be used to build a 3D occupancy map

of obstacles.
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7.3.6 Collaborative obstacle field navigation

The current implementation of the obstacle avoidance framework has a potential

functionality that can be applied to the collaborative autonomy of multiple UAVs.

The target position of the optimization can be selected as an arbitrary position in

the inertial frame. This could be a waypoint or even the position of other vehicles.

A coarse path determined by global search or the cuboid obstacle field database

might be shared by the ground control station or other vehicles moving toward the

same destination point in the obstacle field. Therefore, the vehicles can share rough

information about an unexplored region and can determine an initial safe route toward

the destination a priori. For such autonomy of obstacle field navigation, the inter-

vehicle communication and data sharing architecture are prerequisites.
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APPENDIX A

ESTIMATION OF REQUIRED POWER

The required power can be estimated by a combination of momentum theory and

blade element theory. Kong et al.[75] suggested a concise method to estimate it and

this chapter is mainly referenced from their work.

Base starting point is the estimation of the induced velocity, vi, at hovering con-

dition

vh = vi =

√
T

2ρA
=

√
W

2ρA
(95)

where T is the thrust, W is the weight, ρ is the air density, and A is the main rotor

area, then the induced power at hovering is given by:

Ph = Wvh = Wvi =
W

3
2

√
2ρA

(96)

In forward flight, the power required Pr can be approximated by the summation

of the power components:

Pr = Pi + P0 + Pp + Pt + Pc/d (97)

where Pi is the induced power, P0 is the profile power, Pp is the parasitic power to

overcome the drag, Pt is the tail rotor power, and Pc/d is the power for climbing or

descending.

Forward flight induced power can be calculated by the forward flight induced

velocity

vi = vh

√√√√√1

4

(
V∞ sinα

vh

)4

− 1

2

(
V∞ cosα

vh

)2

(98)

where V∞ is the forward speed and α is the angle of attack of the main rotor. The
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thrust T can be obtained by the acceleration

|T | = m|~a+ (−~g)| (99)

so the induced power can be obtained Equations (98) and (100)

Pi = |T |vi (100)

The profile power can be estimated from the blade element theory

P0 =
σCd0

8
(1 +Kµ2)Ph (101)

The computation of Pc/d is more complex. For instance, descending at slow for-

ward speed is more expensive than hovering as long as −2vh ≤ vc ≤ 0. For Yamaha

Rmax, the maximum descending velocity is chosen to be about 7ft/s at low for-

ward speed, which is located in the region between hover and windmill state. And

the threshold when the helicopter starts behaving like an airplane is chosen to be

15ft/s. If the forward speed is lower than this threshold speed, the power can be

approximated by

Pc/d = Ph

(
κ− vc

vh

)
(102)

where κ is the induced power factor which is 1.0 for ideal case. As for climbing, the

power under slower forward speed is:

Pc/d = Ph

 vc
2vh

+

√(
vc

2vh

)2

+ 1

 (103)

For high forward speed, the climb power is equal to the rate of increase of potential

energy and descending power is negative to reflect the fact that the helicopter can

convert potential energy into kinetic energy.

The tail rotor power Pt typically varies between 3 to 5 percent of the main rotor

power in normal flight.
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Figure 96: Original Yamaha RMAX is designed for agricultural and industrial use.

Table 6: Yamaha Rmax Specifications

main rotor diameter 3,115 mm
tail rotor diameter 545 mm
length 3.63 m (with main rotor)
width 2.0 m
height 1.22 m
weight approx. 95 kg (209.4 lb)
engine liquid-cooled 2-stroke cylinder, 21 hp
* http://www.yamaha-motor.co.jp/global/news/2002/02/06/sky.html
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This thesis presents an integrated framework for online obstacle avoidance

of rotary-wing unmanned aerial vehicles (UAVs), which can provide UAVs an ob-

stacle field navigation capability in a partially or completely unknown obstacle-rich

environment. The framework is composed of a LIDAR interface, a local obstacle

grid generation, a receding horizon (RH) trajectory optimizer, a global shortest path

search algorithm, and a climb rate limit detection logic.

The key feature of the framework is the use of an optimization-based trajectory

generation in which the obstacle avoidance problem is formulated as a nonlinear

trajectory optimization problem with state and input constraints over the finite range

of the sensor. This local trajectory optimization is combined with a global path

search algorithm which provides a useful initial guess to the nonlinear optimization

solver. Optimization is the natural process of finding the best trajectory that is

dynamically feasible, safe within the vehicle’s flight envelope, and collision-free at

the same time. The optimal trajectory is continuously updated in real time by the

numerical optimization solver, Nonlinear Trajectory Generation (NTG), which is a

direct solver based on the spline approximation of trajectory for dynamically flat

systems. In fact, the overall approach of this thesis to finding the optimal trajectory

is similar to the model predictive control (MPC) or the receding horizon control

(RHC), except that this thesis followed a two-layer design; thus, the optimal solution

works as a guidance command to be followed by the controller of the vehicle.

The framework is implemented in a real-time simulation environment, the Geor-

gia Tech UAV Simulation Tool (GUST), and integrated in the onboard software of
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the rotary-wing UAV test-bed at Georgia Tech. Initially, the 2D vertical avoidance

capability of real obstacles was tested in flight. Then the flight test evaluations were

extended to the benchmark tests for 3D avoidance capability over the virtual obsta-

cles, and finally it was demonstrated on real obstacles located at the McKenna MOUT

site in Fort Benning, Georgia. Simulations and flight test evaluations demonstrate

the feasibility of the developed framework for UAV applications involving low-altitude

flight in an urban area.
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